Sustainability assessment of soil properties in Coffea arabica – based agroforestry systems of Atok, Benguet, Philippines

Paper Details

Research Paper 01/09/2018
Views (1260)
current_issue_feature_image
publication_file

Sustainability assessment of soil properties in Coffea arabica – based agroforestry systems of Atok, Benguet, Philippines

Conrado C. Bao-idang
J. Biodiv. & Environ. Sci. 13(3), 17-31, September 2018.
Copyright Statement: Copyright 2018; The Author(s).
License: CC BY-NC 4.0

Abstract

This study was undertaken in response to the little evidence and detailed analysis in literature to support claims that coffee-based agro forestry systems are sustainable. It studied the status of soil properties as affected by the farm elevation, species of shade trees and coffee ages in the Arabica coffee–based agro forestry systems in Atok, Benguet, Philippines. The split-split design was used. A total of thirty six (36) experimental plots were established where soil samples were obtained and subsequently analyzed in the soils laboratory of UPLB. Results show that, of the studied soil properties (NPK and OM contents, pH and Bulk Densities), only N is significantly affected by the species of shade trees, and only N and OM are significantly affected by the ages of coffee trees and the interactions of shade trees and coffee ages; all said soil properties are not significantly affected by the elevation of the farms. In addition, the status or level of NPK and OM contents, and soil pH are moderately sustainable, while soil BD is assessed to be highly sustainable. The average initial soil N is significantly higher in the following: 1) Plots with coffee-fruit trees combination, but significantly decreased at the end of the study and become comparable with that of the plots with coffee-Alnus combinations; 2) Plots with old coffee trees but decreased (together with that of the middle-aged) and become significantly lower than that of the younger (3-10 years) coffee trees where it increased;3) Plots with old coffee–Alnus combination which decreased but remain significantly higher at the end of the study; and4) Plots with young coffee–fruit trees combinations which even increased at the end of the study while the rest remained or decreased.

Acland JD. 1971. East African Crops, Food and Agricultural Organization/Longmans, Rome.

Bilag JN. 1985. Assessment of the Performance of Coffee Trees Under Partially Shaded and Exposed Conditions. Unpublished Bachelor of Science in Agriculture Thesis.p 10-40.

Buckman HO. Brady NC. 1952.The Nature and Properties of Soil. Soil Bulk Density. p 57-60.

Chimpamba JB. 2010. Agroforestry and Soil Conservation. www.cabi.org/GARA/showPDF.asp

Clifford MN, Wilson KC.Coffee Botany, Biochemistry and Production of Beans and Beverage. p 97-107.

CSR/Food and Agricultural Organization Staff. 1983. Reconnaissance and Land Resource Surveys 1:250,000 Scale Atlas Format Procedure. Center for Soil Research, Bogor, Indonesia.

DOM-Oguen RL. 2009. Even Locals Produce World’s Most Expensive Coffee Brew. Baguio Midland Courier. www.baguiomidlandcourier.com.ph

Fisher FR, Binkley D.2000.Ecology and Management of Forest Soils. Third Edition. John Wiley and Sons, Inc. p 1-4.

Hosseinifard SJ, Khademi H,KalbasiM.2010. Different Forms of Soil Potassium as Affected by the Age of Pistachio (Pistaciavera L.) Trees in Rafsanjan, Iran. Geoderma 155 (2010) 289–297.

Latoza RL. 1998. Soil Properties, Erosion Rates, and Crop Growth and Yield of a 3-Year Old Fallow of Kakawate [Gliricidia sepium (Jaq) Walp.] – Based Alley Cropping System. Unpublished Ph.D. Thesis, University of the Philippines Los Baños, College Laguna, Laguna, Philippines.

Legada GLJR.  1998. Sustainability Analysis of the Upland Stabilization Program in Palawan, Philippines. Unpublished Ph.D. Thesis. University of the Philippines Los Baños, College Laguna, Laguna, Philippines.

Macanes VL. 2006. Assessment on the Occurrence and Severity of Disease Infecting Arabica Coffee (Coffea arabica L.) in Benguet Province.

Namuco LO, Protacio CM.2010.Fruit and Plantation Crop Production in the Philippines. The University Press, Diliman, Quezon City.

Navasero-Gascon CS. 1998. Sustainability Indicators of the Hanunuo Mangyan Agro forestry Systems, Sitio Dangkalan, Bulalalcao, Oriental Mindoro, Philippines. Unpublished Ph.D. Dissertation. University of the Philippines Los Baños, College Laguna, Laguna. Philippines.p 13-30.Office of the Benguet Provincial Agriculture, 2014.Compilation of Crop Productions from the 13 Municipalities of the Province of Benguet.

Philippine chamberof commerce and industry 2011.Benguet Coffee Growers Perking Up Farming in the Highlands. http://www.philippinechamber.com/index.php.

Robinson JBD. 164. A Handbook on Arabica Coffee in Tanganyika, Tanganyika Coffee Board, Moshi.

Syampungani SPW, Chirwa FK, Akinnifesi Ajayi OC. 2010.The Potential of Using Agroforestry as a Win-Win Solution to Climate Change Mitigation and Adaptation and Meeting the Food Security Challenge in Southern Africa. Agricultural Journal5(2).

Tacloy JG.2012. An Introduction to Agro forestry Handout/Module. Benguet State University-College of Forestry.

The Agriculture agribusiness week,2001. Growing Arabica Under Pine. p 2-5. http://www.agribusnessweek.com/growing-arabica-coffee-under-pine-trees/

Torquebiau E. 1992. Are Tropical Agroforestry Home Gardens Sustainable? Agric. Ecosystem Environ. 41,189-207. ICRAF, Nairobi, Kenya.

Umali-Garcia M.2011. Application of Biotechnology for the Restoration of Degraded Forest Ecosystem Cum Organic Farming. UPLB-CFNR-FBS Department, College Laguna, Laguna, Philippines.

Wei L, Yang G, Chen H, Tian J, Zhang Y, Zhu Q, PengC, Yang J.2013. Soil Available Nitrogen, Dissolved Organic Carbon and Microbial Biomass Content Along Altitudinal Gradient of the Eastern Slope of    Gongga  Mountain. Acta Ecologica Sinica 33(2013), 266–271. http://en.Wikipedia.org/w/index.php?title=Atok.

Related Articles

Agroforestry in woody-encroached Sub-Saharan savannas: Transforming ecological challenges into sustainable opportunities

Yao Anicet Gervais Kouamé, Pabo Quévin Oula, Kouamé Fulgence Koffi, Ollo Sib, Adama Bakayoko, Karidia Traoré, J. Biodiv. & Environ. Sci. 27(3), 10-22, September 2025.

Extreme rainfall variability and trends in the district of Ouedeme, municipality of Glazoue (Benin)

Koumassi Dègla Hervé, J. Biodiv. & Environ. Sci. 27(3), 1-9, September 2025.

Heterosis breeding, general and specific combining ability and stability studies in pearl millet: Current trends

Ram Avtar, Krishan Pal, Kavita Rani, Rohit Kumar Tiwari, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 117-124, August 2025.

Combining ability, heterosis and stability for yield and fibre quality traits in cotton: Breeding approaches and future prospects

Rohit Kumar Tiwari, Krishan Pal, R. P. Saharan, Ram Avtar, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 109-116, August 2025.

Bridging the COPD awareness gap in marginalized populations: Findings from a multicentre study in Khalilabad, Sant Kabir Nagar, Uttar Pradesh, India

Anupam Pati Tripathi, Jigyasa Pandey, Sakshi Singh, Smita Pathak, Dinesh Chaudhary, Alfiya Mashii, Farheen Fatima, J. Biodiv. & Environ. Sci. 27(2), 97-108, August 2025.

Antioxidant and anti-inflammatory activity of Pleurotus citrinopileatus Singer and Pleurotus sajor-caju (Fr.) Singer

P. Maheswari, P. Madhanraj, V. Ambikapathy, P. Prakash, A. Panneerselvam, J. Biodiv. & Environ. Sci. 27(2), 90-96, August 2025.

Mangrove abundance, diversity, and productivity in effluent-rich estuarine portion of Butuanon River, Mandaue City, Cebu

John Michael B. Genterolizo, Miguelito A. Ruelan, Laarlyn N. Abalos, Kathleen Kay M. Buendia, J. Biodiv. & Environ. Sci. 27(2), 77-89, August 2025.

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.