Temporo-spatial distribution of ground dwelling spider genera among fodder crops at Okara district, Pakistan

Paper Details

Research Paper 01/04/2016
Views (634)
current_issue_feature_image
publication_file

Temporo-spatial distribution of ground dwelling spider genera among fodder crops at Okara district, Pakistan

Munaza Shabnam, Muhammad Arshad Rana, Naureen Rana, Sobia Kanwal, Shamsa Altaf, Marriam Batool
J. Biodiv. & Environ. Sci. 8(4), 80-90, April 2016.
Copyright Statement: Copyright 2016; The Author(s).
License: CC BY-NC 4.0

Abstract

The present study was designed to record the temporo-spatial distribution of ground dwelling spider genera among fodder crops at Okara district. Sampling was made from berseem and mustard crops on fortnight basis through pitfall traps. Equal number of traps were placed in three rows e.g. along the boundary, middle of the field and centre of the field. Each trap was filled with mixture solution of alcohol and glycerin (70:30%) along with few drops of kerosene oil. After 5 days interval sample traps collected and spider specimen were washed with distilled water and permanently stored in labeled glass vials. Each spider specimen was identified according to the taxonomic material and internet source. Overall maximum spatial distribution of spider population was documented in middle transect than boundary and centre of the fodder crops. It was observed that temperature, humidity and prey availability were the major factors effecting the spider’s population. Population variations recorded during the months of February, March and April in 2015, due to rise of temperature, decrease of humidity and availability of prey. It was concluded that spiders have direct correlation with temperature and suitable local conditions. Moreover, spiders are cost effective, functionally significant and play a key role in regulating decomposer population.

Ahmad S, Ghafoor A, Iqbal MZ. 2005. Biodiversity of Gnaphosid spiders of Triticum vulgare from District Okara, Punjab, Pakistan. Indus Journal Biological Science 2(4), 477-482.

Anonymous.   2012-13.   Agricultural    Statistics    of Pakistan. Ministry of Food and Agriculture (Economic Wing), Government of Pakistan. Islamabad.

Barrion AT, Litsinger TA. 1995. Riceland spider of South and South Asia. International Rice Research Institute Philphines.

Dippenaar-Schoeman A. 2006. Spiders – The African Farmer’s Best Friend. Science in Africa – Africa’s First On-Line Science Magazine, 1-4 P.

Douglas AL, Stephen DW, Geoff MG. 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology 45, 175-201.

Ghaffar A, Musthaq S, Rana SA, Khalil-ur-Rehman. 2011. Influence of Citrus and Guava Branch Architecture on Foliage Spider Fauna. Journal of Agriculture Biology 13, 406-410.

Govt. of Pakistan. 2010. Agriculture Statistics, Federal Bureau of Statistics, Ministry of Economic Affairs and Statistics, Pakistan.

Hussain A, Khan S, Bakhsh A, Imran M, Ansar M. 2010. Variability in fodder production potential of exotic oats (Avena sativa) genotypes under irrigated conditions. Journal of Agriculture Research 48, 65-71.

Kazim M, Perveen R, Hussain R, Fatima N. 2014. Biodiversity of spiders (Arachnida: araneae) of Karachi (urban) Sindh province, Pakistan. Journal of Entomology and Zoology Studies 2(6), 308-313.

Khalil IA, Jan A. 2000. Cropping Technology. Millennium Ed. National Book.

Liljesthrom G, Miner vino E, Castro D, González A. 2002. La comunidad de arañas Del cultivo de soja en la provincia de Buenos Aires, Argentina. Neotropical Entomology 3(2), 197-210.

Magurran AE. 1988. Ecological diversity and its measurement. Princeton University Press, New Jersey, 34-36 P.

Mushtaq S, Beg MA, Aziz S. 2003. Biodiversity and temporal varieties in the abundance of cursorial spiders of a cotton field at Faisalabad. Pakistan Journal of Zoology 35(2), 125-131.

Musthaq S, Ali, MA, Riaz M, Murtaza A, Ahmad S. 2005. Spider as insect’s natural enemies: evaluation of feeding niche of co-existing foliage species in cotton. Indus Cotton 2, 193-204.

Platnick NI. 2012. The world spider catalog, version 12.5. American Museum of Natural History, online at http://research.amnh.org/iz/spiders/catalog

Pradeep M, Sankaran, Malamel, Jobi J, Sebastian PA. 2015. Redescription of the orb-weaving spider Gasteracantha geminate (Fabricius, 1798) (Araneae, Araneidae) Zootaxa, 3915 (1), 147– 150.

Rajeswaran J, Duraimurugan P, Shanmugam PS. 2005. Role of spiders in agriculture and horticulture ecosystem. Journal of Food, Agriculture and Environment 3(3-4), 147 152.

Rana MA, Shabnam M, Rana N, Sultana T, Sultana S, Kanwal S, Ahmad I. 2016. Population dynamics of ground dwelling spider genera among mustard crop. Journal of Biodiversity and Environmental Sciences 8(2), 114-123.

Rittschof CC. 2012. The effects of temperature on egg development and web site selection in Nephila clavipes. Journal of Arachnology 40(1), 141-145.

Seyfulina RR. 2003. Spatial distribution of spiders (Arachnida: Araneae) in agro-ecosystems of the European part of Russia. Proc. 21stEur. Colloq. Arachnol. 275-292 P.

Seyfulina RR, Tshernyshev VB. 2001. Hortobiont spiders (Arachnida, Araneae) in agro-ecosystems of Moscow Province (species composition, spatial distribution and seasonal dynamics). ENT. Obozr. 81(Suppl. 1), 137-148.

Tikader BK, Biswas B. 1981. Spider fauna of Calcutta and vicinity. Record of Zoological Survey India 30, 1-148.

Tikader BK, Malhotra MS. 1982. The fauna of India. Araneae, I (Part II). Lycosidae. Zoological Survey India, Calcutta.

Thomas O, Mér O, Janjatovi M, Horváth R, Mrkobrad K, Žuljevic A. 2014. Factors influencing the appearance of spider (Araneae) and beetle (Coleoptera) assemblages in nests of great reed warbler Acrocephalus arundinaceus. Biologia, 69(7), 920-925.

Wise DH. 1993. Spiders in ecological webs. Cambridge Univ. Press.

Younas M, Yaqoob M. 2005. Feed resources of live-stock in the Punjab, Pakistan. Live-stock Research for Rural Development.

Zhu MS, Song DX, Zhang JX. 2003. Fauna Sinicaa: Arachnidat, Aranea, Tetragnathidae. Science Press, Beijing, China, 418 P.

Related Articles

Overemphasis on blue carbon leads to biodiversity loss: A case study on subsidence coastal wetlands in southwest Taiwan

Yih-Tsong Ueng, Feng-Jiau Lin, Ya-Wen Hsiao, Perng-Sheng Chen, Hsiao-Yun Chang, J. Biodiv. & Environ. Sci. 27(2), 46-57, August 2025.

An assessment of the current scenario of biodiversity in Ghana in the context of climate change

Patrick Aaniamenga Bowan, Francis Tuuli Gamuo Junior, J. Biodiv. & Environ. Sci. 27(2), 35-45, August 2025.

Entomofaunal diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivation systems within the cotton-growing zone of central Benin

Lionel Zadji, Roland Bocco, Mohamed Yaya, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, J. Biodiv. & Environ. Sci. 27(2), 21-34, August 2025.

Biogenic fabrication of biochar-functionalized iron oxide nanoparticles using Miscanthus sinensis for oxytetracycline removal and toxicological assessment

Meenakshi Sundaram Sharmila, Gurusamy, Annadurai, J. Biodiv. & Environ. Sci. 27(2), 10-20, August 2025.

Bacteriological analysis of selected fishes sold in wet markets in Tuguegarao city, Cagayan, Philippines

Lara Melissa G. Luis, Jay Andrea Vea D. Israel, Dorina D. Sabatin, Gina M. Zamora, Julius T. Capili, J. Biodiv. & Environ. Sci. 27(2), 1-9, August 2025.

Effect of different substrates on the domestication of Saba comorensis (Bojer) Pichon (Apocynaceae), a spontaneous plant used in agroforestry system

Claude Bernard Aké*1, Bi Irié Honoré Ta2, Adjo Annie Yvette Assalé1, Yao Sadaiou Sabas Barima1, J. Biodiv. & Environ. Sci. 27(1), 90-96, July 2025.

Determinants of tree resource consumption around Mont Sangbé national park in western Côte d’Ivoire

Kouamé Christophe Koffi, Serge Cherry Piba, Kouakou Hilaire Bohoussou, Naomie Ouffoue, Alex Beda, J. Biodiv. & Environ. Sci. 27(1), 71-81, July 2025.