The effects of co-inoculation of PGPR bacteria and Sinorhizobium meliloti on nutrient contents, plant growth and yield of alfalfa

Paper Details

Research Paper 01/11/2019
Views (589)
current_issue_feature_image
publication_file

The effects of co-inoculation of PGPR bacteria and Sinorhizobium meliloti on nutrient contents, plant growth and yield of alfalfa

Alireza Tavasolee, Kazem Khavazi, Ahmad Asgharzadeh, Hassan Monirifar, Saeid Ghassemi
J. Biodiv. & Environ. Sci. 15(5), 8-13, November 2019.
Copyright Statement: Copyright 2019; The Author(s).
License: CC BY-NC 4.0

Abstract

Two field experiments with factorial arrangement based on a randomized complete block design with three replications were conducted in 2013 and 2014 to evaluate the effects of co-inoculation of PGPR bacteria (control and mixed of azotobacter, azospirillum and pseudomonas inoculations) and Sinorhizobium meliloti (control, strain 1, strain 2, strain 3 and mixed of these strains) on nutrient contents, plant growth and yield of alfalfa (Medicago sativa). Results showed that application of PGPR bacteria enhanced nitrogen (N), phosphorus (P), manganese (Mn), zinc (Zn) and copper (Cu) contents of alfalfa in compared with control. Plant height, fresh and dry weight of forage in 2013 were significantly higher than 2014. PGPR treatment significantly increased plant height, number of branches, fresh and dry weight of forage of alfalfa compared with control.

Arshad MF, Frankenberger WT. 1998. Plant growth-regulating substances in the rhizosphere: microbial production and functions. Advances in Agronomy 62, 45-51.

Babalola OO. 2010. Beneficial bacteria of agricultural importance. Biotechnology Letters 32, 1559-1570.

Brewin NJ. 2004. Plant cell wall remodelling in the Rhizobium-legume symbiosis. Critical Reviews in Plant Sciences 25, 1-24.

Cappellari L, Chiappero J, Valeria Santoro M, Giordano W, Banchio E. 2017. Inducing phenolic production and volatile organic compounds emission by inoculating Mentha piperita with plant growth-promoting rhizobacteria. Scientia Horticulturae  220, 193-198.

Chanway CP. 2002. Plant growth promotion by Bacillus and relatives. In: Berkeley, R., Heyndrickx, M., Logan, N., De Vos, P. (Eds.), B. subtilis for Biocontrol in Variety of Plants. Blackwell Publishing, Malden, MA, pp. 219-235.

Cleland R. 1971. Cell wall extension. Annual Review of Plant Physiology 22, 197-222.

Esitken A, Ercisli S, Karlidag H, Sahin F. 2005. Potential use of plant growth promoting rhizobacteria (PGPR) in organic apricot production. In: Proceedings of the International Scientific Conference of Environmentally Friendly Fruit Growing, Tartu-Estonia pp. 90-97.

Ghassemi-Golezani K, Zafarani-Moattar P, Raey Y, Mohammadi M. 2010. Response of pinto bean cultivars to water deficit at reproductive stages. Journal of Food, Agriculture and Environment 8, 801-804.

Gibson KE, Kobayashi H, Walker GC. 2008. Molecular determinants of a symbiotic chronic infection. Annual Review of Genetics 42, 413-441.

Glick BR, Changping L, Sibdas G, Dumbroff EB. 1997. Early development of canola seedlings in the presence of the plant growth promoting rhizobacteria Pseudomonas putida GR12-2. Soil Biology and Biochemistry 29, 1233-1239.

Hearn AB. 1994. The principles of cotton water relations and their application in management, in: Constable, G.A., Forrester, N.W. (Eds.), Challenging the Future, Proc. World Cotton Conf. Brisbane, Australia pp. 66-92.

Holl FB, Chanway CP, Turkington R, Radley RA. 1988. Response of crested wheatgrass (Agropyron cristatum L.), perennial ryegrass (Lolium perenne L.), and white clover (Trifolium repens L.) to inoculation with Bacillus polymyxa. Soil Biology and Biochemistry 20, 19-24.

Hu YG, Cash D. 2009. Global status and development trends of alfalfa. In alfalfa management guide for Ningxia. United Nations Food and Agriculture Organization. Beining, China.

Jiang HM, Jiang JP, Jia Y, Li FM, Xu JZ. 2006. Soil carbon pool and effects of soil fertility in seeded alfalfa fields on the semi-arid Loess Plateau in China, Soil Biology and Biochemistry 38, 2350-2358.

Lindberg T, Granhall U. 1984. Isolation and characterization of dinitrogen-fixing bacteria from the rhizosphere of temperate cereals and forage grasses. Applied and Environmental Microbiology 48, 683-689.

Marschner H. 1995. Mineral Nutrition of Higher Plants, 2nd ed. Academic Press, London.

O’Connell PF. 1992. Sustainable agriculture valid alternative. Outlook on Agriculture 21, 5-12.

Pérez-Montano F, Alías-Villegas C, Bellogín RA, del Cerro P, Espuny MR, Jiménez-Guerrero I, López-Baena FJ, Ollero FJ, Cubo T. 2014. Plant growth promotion in cereal and leguminous agriculturalimportant plants: From microorganism capacities to crop production. Microbiological Research 169, 325-336.

Shao HB, Chu LY, Jaleel CA, Zhao CX. 2008. Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies 331, 215-225.

Sprent JI. 2001. Nodulation in Legumes. London: Royal Botanic Gardens, Kew.

Related Articles

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.

Conservation and trade dynamics of non-timber forest products in local markets in south western Cameroon

Kato Samuel Namuene, Mojoko Fiona Mbella, Godswill Ntsomboh-Ntsefong, Eunice Waki, Hudjicarel Kiekeh, J. Biodiv. & Environ. Sci. 27(2), 58-69, August 2025.

Overemphasis on blue carbon leads to biodiversity loss: A case study on subsidence coastal wetlands in southwest Taiwan

Yih-Tsong Ueng, Feng-Jiau Lin, Ya-Wen Hsiao, Perng-Sheng Chen, Hsiao-Yun Chang, J. Biodiv. & Environ. Sci. 27(2), 46-57, August 2025.

An assessment of the current scenario of biodiversity in Ghana in the context of climate change

Patrick Aaniamenga Bowan, Francis Tuuli Gamuo Junior, J. Biodiv. & Environ. Sci. 27(2), 35-45, August 2025.

Entomofaunal diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivation systems within the cotton-growing zone of central Benin

Lionel Zadji, Roland Bocco, Mohamed Yaya, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, J. Biodiv. & Environ. Sci. 27(2), 21-34, August 2025.

Biogenic fabrication of biochar-functionalized iron oxide nanoparticles using Miscanthus sinensis for oxytetracycline removal and toxicological assessment

Meenakshi Sundaram Sharmila, Gurusamy, Annadurai, J. Biodiv. & Environ. Sci. 27(2), 10-20, August 2025.

Bacteriological analysis of selected fishes sold in wet markets in Tuguegarao city, Cagayan, Philippines

Lara Melissa G. Luis, Jay Andrea Vea D. Israel, Dorina D. Sabatin, Gina M. Zamora, Julius T. Capili, J. Biodiv. & Environ. Sci. 27(2), 1-9, August 2025.

Effect of different substrates on the domestication of Saba comorensis (Bojer) Pichon (Apocynaceae), a spontaneous plant used in agroforestry system

Claude Bernard Aké*1, Bi Irié Honoré Ta2, Adjo Annie Yvette Assalé1, Yao Sadaiou Sabas Barima1, J. Biodiv. & Environ. Sci. 27(1), 90-96, July 2025.