The protective effect of black pepper (Piper nigrum) on liver enzymes in streptozotocin-induced diabetic rats

Paper Details

Research Paper 18/10/2025
Views (10)
current_issue_feature_image
publication_file

The protective effect of black pepper (Piper nigrum) on liver enzymes in streptozotocin-induced diabetic rats

Amani A. R. Filimban, Khulud A. Wathi
Int. J. Biosci. 27(4), 140-149, October 2025.
Copyright Statement: Copyright 2025; The Author(s).
License: CC BY-NC 4.0

Abstract

Diabetes mellitus (DM) is a global metabolic disorder that leads to various complications, including liver dysfunction. Streptozotocin (STZ)-induced diabetes in rats serves as a model to study diabetes-related liver injury, often evidenced by elevated liver enzyme levels. This study aimed to investigate the hepatoprotective effects of black pepper (Piper nigrum) aqueous extract on liver enzymes in STZ-induced diabetic rats. A controlled laboratory-based experimental study was conducted using eighteen male Wistar rats, divided into three groups: control (healthy), diabetic (induced by STZ), and black pepper-treated diabetic (50 mg/kg body weight for 28 days). Diabetes was induced with a single STZ injection (55 mg/kg). Liver function markers, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and gamma-glutamyl transferase (GGT), were assessed, and histological analysis was performed on liver tissues. the results showed significant elevations in liver enzymes were observed in the diabetic group compared to the control. Black pepper treatment significantly reduced ALT, AST, ALP, and GGT levels, with results showing normalization of liver function markers. Histological analysis revealed improved hepatic architecture in the treated group, with reduced signs of cellular stress and damage. Black pepper extract demonstrated significant hepatoprotective effects in STZ-induced diabetic rats, potentially due to its antioxidant and anti-inflammatory properties. These findings support the potential of black pepper as a complementary therapy for managing diabetes-induced liver dysfunction.

Abuduyimiti T, Goto H, Kimura K, Oshima Y, Tanida R, Kamoshita K, Leerach N, Abuduwaili H, Oo HK, Li Q, Galicia-Medina CM, Takayama H, Ishii K, Nakano Y, Takeshita Y, Iba T, Naito H, Honda M, Harada K, Takamura T. 2024. Diabetes accelerates steatohepatitis in mice: Liver pathology and single-cell gene expression signatures. The American Journal of Pathology 194(5), 693–707. https://doi.org/10.1016/j.ajpath.2024.01.007

Antar SA, Ashour NA, Sharaky M, Khattab M, Ashour NA, Zaid RT, Roh EJ, Elkamhawy A, Al-Karmalawy AA. 2023. Diabetes mellitus: Classification, mediators, and complications; a gate to identify potential targets for the development of new effective treatments. Biomedicine & Pharmacotherapy 168, 115734. https://doi.org/10.1016/j.biopha.2023.115734

Arcaro CA, Gutierres VO, Assis RP, Moreira TF, Costa PI, Baviera AM, Brunetti IL. 2014. Piperine, a natural bioenhancer, nullifies the antidiabetic and antioxidant activities of curcumin in streptozotocin-diabetic rats. PloS One 9(12), e113993. https://doi.org/10.1371/journal.pone.0113993

Ashoobi MT, Joukar F, Mojtahedi K, Maroufizadeh S, Javid M, Parvaneh A, Zeinali T, Faraji N, Naghipour M, Mansour-Ghanaei F. 2024. Elevated liver enzymes and diabetes in the PERSIAN Guilan cohort study. Caspian Journal of Internal Medicine 16(1), 73–82. https://doi.org/10.22088/cjim.16.1.73

Balakrishnan R, Azam S, Kim IS, Choi DK. 2023. Neuroprotective effects of black pepper and its bioactive compounds in age-related neurological disorders. Aging and Disease 14(3), 750–777. https://doi.org/10.14336/AD.2022.1022

Choi S, Choi Y, Choi Y, Kim S, Jang J, Park T. 2013. Piperine reverses high fat diet-induced hepatic steatosis and insulin resistance in mice. Food Chemistry 141(4), 3627–3635. https://doi.org/10.1016/j.foodchem.2013.06.028

Clim A, Maranducă MA, Pinzariu AC, Faur IF, Huzum B, Hăncianu M, Szilagyi A, Tamba BI, Șerban DN, Șerban IL. 2024. Dosage of streptozotocin for inducing models of diabetes mellitus in obesity rats with endothelial dysfunction. Farmacia 72(2), 448–455. https://doi.org/10.31925/farmacia.2024.2.22

Dludla PV, Cirilli I, Marcheggiani F, Silvestri S, Orlando P, Muvhulawa N, Moetlediwa MT, Nkambule BB, Mazibuko-Mbeje SE, Hlengwa N, Hanser S, Ndwandwe D, Marnewick JL, Basson AK, Tiano L. 2023. Bioactive properties, bioavailability profiles, and clinical evidence of the potential benefits of black pepper (Piper nigrum) and red pepper (Capsicum annum) against diverse metabolic complications. Molecules 28(18), 6569. https://doi.org/10.3390/molecules28186569

Ghosh S, Bhattacharyya S, Rashid K, Sil PC. 2015. Curcumin protects rat liver from streptozotocin-induced diabetic pathophysiology by counteracting reactive oxygen species and inhibiting the activation of p53 and MAPKs mediated stress response pathways. Toxicology Reports 2, 365–376. https://doi.org/10.1016/j.toxrep.2014.12.017

Hassan HY, Fadel HK. 2023. Comparison between the efficacy of Nigella sativa aqueous extract and its oil on methimazole-induced hypothyroidism in albino mice. Jordan Journal of Pharmaceutical Sciences 16(1), 103–111. https://doi.org/10.35516/jjps.v16i1.1072

Kumar S, Malhotra S, Prasad AK, Van der Eycken EV, Bracke ME, Stetler-Stevenson WG, Parmar VS, Ghosh B. 2015. Anti-inflammatory and antioxidant properties of Piper species: a perspective from screening to molecular mechanisms. Current Topics in Medicinal Chemistry 15(9), 886–893. https://doi.org/10.2174/1568026615666150220120651

Lateef MAM, Abdulhadi HL, Ali LH. 2024. Study of the therapeutic efficacy of pumpkin seed in improving the liver’s activity in rats with STZ-induced diabetes. Frontiers in Health Informatics 13(3), 5336–5351.

Lee AS, Persoff J, Lange SM. 2023. Liver function tests. Mayo Clinic Medical Manual, 373–387. https://doi.org/10.1201/b14283-48

Lu X, Xie Q, Pan X, Zhang R, Zhang X, Peng G, Zhang Y, Shen S, Tong N. 2024. Type 2 diabetes mellitus in adults: pathogenesis, prevention and therapy. Signal Transduction and Targeted Therapy 9(1), 262. https://doi.org/10.1038/s41392-024-01951-9

Mahfoz AM, Gawish AY. 2022. Insight into the hepatoprotective, hypolipidemic, and antidiabetic impacts of aliskiren in streptozotocin-induced diabetic liver disease in mice. Diabetology & Metabolic Syndrome 14(1), 163. https://doi.org/10.1186/s13098-022-00935-5

Mohamed J, Nazratun Nafizah AH, Zariyantey AH, Budin SB. 2016. Mechanisms of diabetes-induced liver damage: the role of oxidative stress and inflammation. Sultan Qaboos University Medical Journal 16(2), e132–e141. https://doi.org/10.18295/squmj.2016.16.02.002

Mori Y, Duru OK, Tuttle KR, Fukuma S, Taura D, Harada N, Inagaki N, Inoue K. 2022. Sodium-glucose cotransporter 2 inhibitors and new-onset type 2 diabetes in adults with prediabetes: systematic review and meta-analysis of randomized controlled trials. The Journal of Clinical Endocrinology and Metabolism 108(1), 221–231. https://doi.org/10.1210/clinem/dgac591

Mugundhan V, Priya V, Jayaraman S, Gayathri R, Kavitha S. 2024. Effect of piperine on IR/IRS-1/AKT signaling molecules in high-fat diet and sucrose-fed type 2 diabetic rat. Texila International Journal of Public Health 2024(Special Issue-1), 136–145. https://doi.org/10.21522/TIJPH.2013.SE.24.01.Art018

Obia O, Emmanuel F. 2025. Effect of oral administration of common pepper types on the liver enzymes of Wistar rats fed with high-fat diet. East African Scholars Journal of Medical Sciences 8, 92–95. https://doi.org/10.36349/easms.2025.v08i03.001

Patandung G, Wahyudin E, Yustisia I, Kabo P, Djabir YY, Sulfahri, Zulfiah. 2024. Potential of black pepper extract (Piper nigrum L) as antidiabetic and anticholesterol in alloxan and propylthiouracil (PTU) induced Wistar rats. Pakistan Journal of Life and Social Sciences 22(2), 20289–20301. https://doi.org/10.57239/pjlss-2024-22.2.001487

Popoviciu MS, Paduraru L, Nutas RM, Ujoc AM, Yahya G, Metwally K, Cavalu S. 2023. Diabetes mellitus secondary to endocrine diseases: an update of diagnostic and treatment particularities. International Journal of Molecular Sciences 24(16), 12676. https://doi.org/10.3390/ijms241612676

Salehi B, Ata A, Anil Kumar NV, Sharopov F, Ramírez-Alarcón K, Ruiz-Ortega A, Abdulmajid Ayatollahi S, Tsouh Fokou PV, Kobarfard F, Amiruddin Zakaria Z, Iriti M, Taheri Y, Martorell M, Sureda A, Setzer WN, Durazzo A, Lucarini M, Santini A, Capasso R, Sharifi-Rad J. 2019. Antidiabetic potential of medicinal plants and their active components. Biomolecules 9(10), 551. https://doi.org/10.3390/biom9100551

Samy JVRA, Kumar N, Singaravel S, Krishnamoorthy R, Alshuniaber MA, Gatasheh MK, Venkatesan A, Natesan V, Kim SJ. 2023. Effect of prunetin on streptozotocin-induced diabetic nephropathy in rats: a biochemical and molecular approach. Biomolecules & Therapeutics 31(6), 619–628. https://doi.org/10.4062/biomolther.2023.068

Solis-Herrera C, Triplitt C, Cersosimo E, DeFronzo RA. 2021. Pathogenesis of type 2 diabetes mellitus.

Thakur S, Kumar V, Das R, Sharma V, Mehta DK. 2024. Biomarkers of hepatic toxicity: an overview. Current Therapeutic Research 100, 100737. https://doi.org/10.1016/j.curtheres.2024.100737

Tiwari A, Mahadik KR, Gabhe SY. 2020. Piperine: a comprehensive review of methods of isolation, purification, and biological properties. Medicine in Drug Discovery 7, 100027. https://doi.org/10.1016/j.medidd.2020.100027

Valenti L, Bugianesi E, Pajvani U, Targher G. 2016. Nonalcoholic fatty liver disease: cause or consequence of type 2 diabetes? Liver International 36(11), 1563–1579. https://doi.org/10.1111/liv.13185

Weinberg Sibony R, Segev O, Dor S, Raz I. 2024. Overview of oxidative stress and inflammation in diabetes. Journal of Diabetes 16(10), e70014. https://doi.org/10.1111/1753-0407.70014

Zhautikova S, Khamida A, Zhienbayeva K, Suleimenova B, Talaspekova Y, Karipova A, Baryshnikova I, Zhalmakhanov M, Piven L, Medvedeva I, Sergey Z, Nazgul O. 2022. Pathogenetic mechanisms of relationship of metabolic and morphofunctional disorders of thyroid and adrenal glands in diabetes mellitus and obesity. Open Access Macedonian Journal of Medical Sciences 10(B), 232–239. https://doi.org/10.3889/oamjms.2022.8151

Zuvairiya U, Jayaraman S, Sankaran K, Veeraraghavan VP, R G. 2024. Studies on the effect of piperine on hepatocyte nuclear factor 1 alpha (HNF-1α) and sterol regulatory element-binding protein 1c (SREBP-1c) levels in high-fat-diet and sucrose-induced type 2 diabetes mellitus rats. Cureus 16(2), e54061. https://doi.org/10.7759/cureus.54061

Related Articles

Production of bioplastics (PHB) using waste paper as feed stock by Cupriavidus taiwanensis

Ajeena Davis, Jini Joseph, Int. J. Biosci. 27(4), 130-139, October 2025.

Gill ectoparasites of the mugilidae from the Ebrié lagoon, Abidjan (Côte d’Ivoire)

Eby Yoboué Gnamma Honorine Alla, Carel Wilfried Bermian Dibi-Ahui, Fidèle Kouassi Kouakou, Abouo Béatrice Adepo-Gourene, Int. J. Biosci. 27(4), 123-129, October 2025.

Impacts of diverse water management systems on growth and yield of two prominent boro rice cultivars in Bangladesh

Zahidul Islam, Md Ekhlasur Rahman, Md Khayrul Islam Bashar, Sharmin Sultana, Md Taharat Al Tauhid, Md Rabiul Islam, Md Shahed Hossain, Md Musa Mondal, Pradip Kumar Biswas, Int. J. Biosci. 27(4), 110-122, October 2025.

First record of Brachymeria excarinata Gahan, 1925 (Hymenoptera: Chalcididae) parasitizing Plutella xylostella (L.) (Lepidoptera: Plutellidae) in west Africa

Babacar Labou, Etienne Tendeng, El hadji Sérigne Sylla, Mamadou Diatte, Karamoko Diarra, Int. J. Biosci. 27(4), 104-109, October 2025.

Assessment of adsorption isotherms of three plantain flours (Musa paradisiaca L. var. Horn 1, FHIA 21 and PITA 3) and cassava flour (Manihot esculenta Crantz var. Bonoua 2)

Brou Koffi Siméon, Yue Bi Yao Clément, Kane Fako, Douali Gohi Bi Douali Jean-Sory, Tano Kablan, Int. J. Biosci. 27(4), 93-103, October 2025.

Exploring the antioxidant efficacy of boldine: A natural compound with broad-spectrum activity

Maharani Jaganathan, Kathiresan Suresh, Manickam John, Rajeswari Vasu, Theerthu Azhamuthu, Nihal Ahamed Abulkalam Asath, Ravichandran Pugazhendhi, Pratheeba Veerapandiyan, Int. J. Biosci. 27(4), 82-92, October 2025.

Assessment of genetic parameters and yield trait stability in sweet sorghum genotypes through AMMI and GGE biplot approaches

A. H. Inuwa, H. A. Ajeigbe, Y. Mustapha, B. S. Aliyu, I. I. Angarawai, Int. J. Biosci. 27(4), 69-81, October 2025.

Flammability of tropical grasses: Towards a functional ecology of fire in savannas

Kouamé Fulgence Koffi, Yao Anicet Gervais Kouamé, Tionhonkélé Drissa Soro, Koffi Prosper Kpangba, Int. J. Biosci. 27(4), 57-68, October 2025.