Tourists and their role in microclimatic changes inside the caves case study: Ali Sadr Cave (Hamedan, Iran)

Paper Details

Research Paper 01/03/2015
Views (656)
current_issue_feature_image
publication_file

Tourists and their role in microclimatic changes inside the caves case study: Ali Sadr Cave (Hamedan, Iran)

Amjad Maleki, Peyman Karimi Soltani
J. Biodiv. & Environ. Sci. 6(3), 535-541, March 2015.
Copyright Statement: Copyright 2015; The Author(s).
License: CC BY-NC 4.0

Abstract

In the present paper we have attempted to divide Ali-Sadr Cave into two experimental areas (the place of tourists’ traffic) and the control area (the newly discovered area and corridors) to calculate and analyze daily and monthly tourists’ contribution in changes of carbon dioxide levels, temperature and relative humidity. Therefore, within a period of 30 days and by taking daily 3 times, the first in the morning (before the arrival of tourists) noon and night (after the departure of tourists) amounts of carbon dioxide, temperature and relative humidity using carbon dioxide detector model AZ (77535), in the two areas of control and experimental were measured and analyzed. The findings of the research show that tourists’ presence inside Ali-Sadr cave of Hamedan and their inhaling and exhaling activity has changed the amount of climatic elements inside the cave and has transformed the microclimatic elements inside the cave. For example, the percentage of carbon dioxide from humans has risen more than 7% of carbon dioxide with natural origin. Moreover, the results indicate 1 to 2 degrees of temperature rise inside the cave due to the presence of tourists. Temperature increase inside the cave has led to increase in evaporation, on the one hand, and to decrease in the relative humidity on the other hand. Deformability of carbonate caves inside the cave, Impact on the health of tourists, Climatic discomfort of the tourists inside the cave.

Baker A, Genty D. 1998. Environmental pressures on conserving cave speleothems. Effects of changing cave tourism. Journal of Environmental Manage-ment 53, 165-175.

Baldini James UL, Baldini Lisa M, McDermott F, Nicholas C. 2006. Carbon dioxide sources, sinks, and spatial variability in shallow temperate zone caves: Evidence from Ballynamintra Cave. Ireland. Journal of Cave and Karst Studies 68, 1. 1-4.

Calaforra JM, Fernández-Cortés A, Sánchez-Martos F, Gisbert J, Pulido-Bosch A. 2003. Environmental control for determining human impact and permanent visitor capacity in a potential show cave before tourist use. Environmental Conservation 30(2), 160-167.

Hotzl H. 1999. Industerial and urban produced impacts. UNESCO project IGCP379. karst processes and the carbon cycle 178-183.

Ilderami A, Mirmehrdad S. 2011. Studying the environmental potentials of the goe-park of Ali-Sadr Cave to develop the economic. social stability of the region. Journal of Environment and Development 3. 116-122.

Michie Neville A. 1990. An Investigation of the Climate. Carbon Dioxide and Dust in Jenolan Caves. N.S.W. A Thesis presented for the degree of Doctor of Philosoplly in the School of Earth Sciences Macquarie University 298.

Moroni M. 2013. Radon and Carbon Dioxide Monitoring: An approach to touristic exploitation of Caves. 5ème Colloque National du Patrimoine Geologique-Tunis 7-9 Mai.

Pulido-Bosch A, Martín-Rosales W, López-Chicano M, Rodríguez-Navarro CM, Vallejos A. 1997. Human impact in a tourist karstic cave (Arecena,spain). Environmental Geology 31, 142-149.

Russel MJ, Maclean VL. 2007. Management issues in a Tasmanian tourist cave. Potential microclimatic impacts of cave modifications. Journal of Environmental Management 87, 474-483.

Song L, Wei X, Liang F. 2000. The influences of cave tourism on CO2 and Cave. temperature in Baiyun Hebei. China. International Journal of Speleology 29 B (1/4). 77-87.

Related Articles

Agroforestry in woody-encroached Sub-Saharan savannas: Transforming ecological challenges into sustainable opportunities

Yao Anicet Gervais Kouamé, Pabo Quévin Oula, Kouamé Fulgence Koffi, Ollo Sib, Adama Bakayoko, Karidia Traoré, J. Biodiv. & Environ. Sci. 27(3), 10-22, September 2025.

Extreme rainfall variability and trends in the district of Ouedeme, municipality of Glazoue (Benin)

Koumassi Dègla Hervé, J. Biodiv. & Environ. Sci. 27(3), 1-9, September 2025.

Heterosis breeding, general and specific combining ability and stability studies in pearl millet: Current trends

Ram Avtar, Krishan Pal, Kavita Rani, Rohit Kumar Tiwari, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 117-124, August 2025.

Combining ability, heterosis and stability for yield and fibre quality traits in cotton: Breeding approaches and future prospects

Rohit Kumar Tiwari, Krishan Pal, R. P. Saharan, Ram Avtar, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 109-116, August 2025.

Bridging the COPD awareness gap in marginalized populations: Findings from a multicentre study in Khalilabad, Sant Kabir Nagar, Uttar Pradesh, India

Anupam Pati Tripathi, Jigyasa Pandey, Sakshi Singh, Smita Pathak, Dinesh Chaudhary, Alfiya Mashii, Farheen Fatima, J. Biodiv. & Environ. Sci. 27(2), 97-108, August 2025.

Antioxidant and anti-inflammatory activity of Pleurotus citrinopileatus Singer and Pleurotus sajor-caju (Fr.) Singer

P. Maheswari, P. Madhanraj, V. Ambikapathy, P. Prakash, A. Panneerselvam, J. Biodiv. & Environ. Sci. 27(2), 90-96, August 2025.

Mangrove abundance, diversity, and productivity in effluent-rich estuarine portion of Butuanon River, Mandaue City, Cebu

John Michael B. Genterolizo, Miguelito A. Ruelan, Laarlyn N. Abalos, Kathleen Kay M. Buendia, J. Biodiv. & Environ. Sci. 27(2), 77-89, August 2025.

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.