User friendly DNA isolation protocol optimized for Ricinus communis L. seeds

Paper Details

Research Paper 01/08/2013
Views (753)
current_issue_feature_image
publication_file

User friendly DNA isolation protocol optimized for Ricinus communis L. seeds

Ajmal Iqbal, Waqar Ahmad, Asaf Khan, Murad Khan, Mohammad Nisar
Int. J. Biosci. 3(8), 124-129, August 2013.
Copyright Statement: Copyright 2013; The Author(s).
License: CC BY-NC 4.0

Abstract

A protocol was developed to isolate high quality genomic DNA from the seeds of Ricinus communis L. (caster) without using liquid nitrogen.The DNA extraction buffer used in this novel protocol constitutes SDS (1%), Tris (1.21%), NaCl (0.58%), EDTA (0.32%), 0.12% and β–Mercaptoethanol witha pH 8.5. In the protocol 0.09g of crushed seeds of caster bean, 600ul of DNA extraction buffer and and 500ul of phenol: chloroform: iso-amylalcohol with a ratio of 25:24:1 were used. The isolated DNA was amplified in Polymerase Chain Reaction using RAPD and SSR primer sets. The primer set successfully amplified the isolated DNA. Hence, the protocol is recommended as a user friendly novel protocol for DNA isolation from the castor beans seeds.

Akande TO, Odunsi AA, Olabode OS, Ojediran TK. 2012. Physical and Nutrient Characterisation of Raw and Processed Castor (Ricinuscommunis L.) Seeds in Nigeria. World Journal of Agricultural Sciences 8, 89-95.

Aljanabi SM, Forget L, Dookun A. 1999. An improved and rapid protocol for the isolation of polysaccharide and polyphenol free sugarcane DNA. Plant Molecular Biology Reporter 17, 1–8. http://dx.doi.org/10.1023/A:1007692929505

Anonymous. 1948-1976. Council of Scientific and Industrial Research.The Wealth of India, New Delhi. 11.

Anonymous. 2006. Agri. Statistics of Pakistan. Ministry of Food, Agriculture and Livestock, Islamabad, Pakistan.

Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K. 1994. Current protocols in molecular biology. John Wiley and Sons, New York. 2.0.1–2.14.8.

Baldanzi  M,  Fambrini  M,  Pugliesi  C.  2005. Redesign  of  the  castor  bean  plant  body  plan  for optimal combine harvesting. Annals of Applied Biology 142, 299-306. http://dx.doi.org/10.1111/j.1744-7348.2003.tb00254.x

Barzegari A, Vahed SZ, Atashpaz S, Khani S, Omidi Y. 2010. Rapid and simple methodololgy for isolation of high quality genomic DNA from coniferous tissues (Taxus baccata). Molecular Biology Reporter 37, 833-837. http://dx.doi.org/10.1007/s1133-009-9634-z

Correa MP. 1984. Dicionario das Plantas Uteis do Brasil e das Exoticas Cultivadas. Ed. Imprensa Nacional Rio de Janeiro, 63.

Doyle JJ, Doyle JL. 1990. Isolation of plant DNA from fresh tissue. Focus 12, 13-15.

Embrapa-Empresa Brasileira de Pesquisa Agropecuaria 2006. Cultivo da mamona. Embrapa-CNPA, Algodao, Campina Grande, Sistemas de Produçao 4-2.

Feijao, RDO. 1963. Rícino. ElucidarioFitologico, ed. InstitutoBotanico de Lisboa, 3, 111-112.

Guillemaut P, Drouard ML. 1992. Isolation of plant DNA: fast, inexpensive, and reliable method. Plant Molecular Biology Reporter 10, 60–65. http://dx.doi.org/10.1016/j.gene.2010.08.009

Ilavarasan  R,  Mallika  M,  Venkataraman  S. 2006. Anti-inflammatory and free radical scavenging activity of Ricinus communis root extract Journal of Ethnopharmacology 103, 478 – 480. http://dx.doi.org/10.1016/j.jep.2005.07.029

Islam M, Ahmad H, Khan IA. 2013. An efficient protocol for DNA isolation from the genus Pyrus. International Journal of Biosciences 3, 122-127. http://dx.doi.org/10.12692/ijb/3.4.122-127

Kang SS, Cordell GA, Soejarto DD, Fong HHS. 1985. Alkaloids and flavonoids from Ricinuscommunis. Journal of Natural Products 48, 155–156. http://dx.doi.org/10.1021/np50037a041

Katterman FRH, Shattuck VL. 1983. An effective method of DNA isolation from the mature leaves of Gossypium  species  that  contain  large  amounts  of phenolic terpenoids and tannins. Preparative Biochemistry 13, 347–359. http://dx.doi.org/10.1080/00327488308068177

Khanuja SPS, Shasany AK, Darokar MP, Kumar S. 1999. Rapid isolation of DNA from dry and fresh samples of plants producing large amounts of secondary metabolites and essential oils.Plant molecular biology Reporter 17, 1 – 7. http://dx.doi.org/10.1023/A:1007528101452

Kumar A, Pushpangadan P, Mehrotra S. 2003. Extraction of high molecular weight DNA from dry root tissue of Berberis lycium suitable for RAPD. Plant Molecular Biology Reporter 21, 309a-309d http://dx.doi.org/10.1007/BF02772807

Li JF, Li L, Sheen J. 2010. Protocol: a rapid and economical procedure for purification of plasmid or plant DNA with diverse applications in plant biology. Plant Methods 6, 1. http://dx.doi.org/10.1186/1746-4811-6-1

Lodhi AM, Ye GN, Weeden NF, Reish. 1994. A simple and efficient method for DNA extraction from grapevine cultivars, Vitis species and Ampelopsis. Plant Molecular Biology Reporter 12, 6-13. http://dx.doi.org/10.1007/BF02668658

Puchooa D, Venkatasamy K. 2005.A protocol for isolation of DNA from Trocetia boutoniana. International Journal of Agriculture and Biology 7, 82-85.

Purohit AR, Verma PU, Patel NJ. 2012. Rapid and Efficient Procedure for Isolation of High Yielding DNA from Castor (Ricinus communis L.). International Journal of Scientific and Research Publications 2, 1–4.

Seo K, Lee G, Ma K, Hyun D, Park Y, Jung J, Lee S, Gwag J, Kim C, Lee M. 2011. Isolation and Characterization of 28 Polymorphic SSR Loci from Castor Bean (Ricinus communis L.). Journal of Crop Science and Biotechnology 14, 97 – 103. http://dx.doi.org/10.1007/s12892-010-0107-7

Smith AR. 1986. Euphorbiaceae. In E. Nasir and S. I. (edt.) Flora of West Pakistan. Department of Botany, Karachi University, Karachi. Pakistan 172.

Smyth RP. 2010. Reducing chimera formation during PCR amplification to ensure accurate genotyping. Genetics 469, 45-51. http://dx.doi.org/10.1016/j.gene.2010.08.009

Yadav RNS, Agarwala M. 2011. Phytochemical analysis of some medicinal plants. Journal of Phytology 3, 10-14.

Related Articles

Modelling the current and future distribution of Okoubaka aubrevillei Pellegr. & Normand under climate change scenarios in Côte d’Ivoire

Sié Fernand Pacôme Ouattara, Franck Placide Junior Pagny, Kouassi Bruno Kpangui, Int. J. Biosci. 27(5), 237-246, November 2025.

Proximate analysis of pelleted sorghum-based feeds as substitute for corn

I. I. Juan S. Daquioag, Michael M. Uy, Int. J. Biosci. 27(5), 232-236, November 2025.

Evolution of the weight of carcasses and offal of Cobb 500 broiler chickens according to the age of slaughter

Soro Soronikpoho, Kouadio Kouakou Parfait, Kouassi Koffi Dongo, Brou Gboko Konan Gatien, Int. J. Biosci. 27(5), 225-231, November 2025.

Agronomic performance of the newly pruned coffee trees at the CSU Lal-lo old coffee plantation

Maribel L. Fernandez, Florante Victor M. Balatico, Ronel A. Collado, Int. J. Biosci. 27(5), 217-224, November 2025.

A comprehensive review and meta-analysis on Alzheimer’s genetics: Exploring the genetic architecture and its application in future genomic medicine

Shafee Ur Rehman, Shabeer Khan, Muhammad Usman, Sakarie Khadar Ibrahim, Int. J. Biosci. 27(5), 204-216, November 2025.

Effect of aqueous leaf extract of Senna occidentalis (Fabaceae) on induced arrhythmia in Rabbits

Obrou Jean Luc Amiltone, Nagalo Ousmane, Mossoun Mossoun Arsène, Abo Kouakou Jean-Claude, Int. J. Biosci. 27(5), 198-203, November 2025.

Targeting proteolytic enzymes in the hemoglobin degradation pathway to inhibit Plasmodium falciparum: An in silico approach

Sethupathi Virumandi, Elumalai Balamurugan, Aakash Ganesan, Sowmiya Ganesan, Srinidhi Raveenthiran, Int. J. Biosci. 27(5), 182-197, November 2025.

Composition and variation of milk from Djallonké goats fed with different diets in Burkina Faso

Alice Gisèle Sidibé-Anago, Vinsoun Millogo, Assouan Gabriel Bonou, Remadji Rufine Djikoldingam, Mariétou Sissao, Michel Kéré, Guy Apollinaire Mensah, Int. J. Biosci. 27(5), 173-181, November 2025.