Welcome to International Network for Natural Sciences | INNSpub

Paper Details

Research Paper | July 1, 2019

| Download

Various growth attributes of Escherichia coli cultures supplemented with Aloe vera as substrate

Ikram-Ul Haq, Mariyam Shaikh, Munazza Raza Mirza¹, Asra Mahar, Mahnoor Dua, Komal Nazir

Key Words:

Int. J. Biosci.15(1), 532-541, July 2019

DOI: http://dx.doi.org/10.12692/ijb/15.1.532-541


IJB 2019 [Generate Certificate]


In present investigation, extracts of aloe vera plant organs incorporated into the TY-growth media and its effects on sub-merged Escherichia coli (E. coli) k1 fermentation are studied. The 18-hours cultures maintained with extracts of different aloe vera fresh organs (12.5%, v/v) in TY0 (1% Bacto-trypton, 0.5% NaCl, 0.5% yeast extract), TY1 (⅛ TY0), TY2 (TY1 + leaf-peel extract), TY3 (TY1 + root extract) and TY4 (TY1 + leaf-gel extract) medium. The cell multiplication observed high in leaf peel extract base TY2 cultures. Among the fermented biochemical analysis, maximum reducing sugars observed in TY4 than other medium (p ≥ 0.05), while flavonoids in TY3 medium non-signifiantly. The total phenolics noted higher in both TY3 and TY4 medium. Similarly hydrolytic enzymes have shown differential activities among the different cultures like as amylases activity in TY2 (gel), xylanases in TY4 (root) and lipases in TY3 (peel) medium measured significantly high. Overall, it is concluded that aloe vera is the best fermentation substrate for the production of various extra-cellular enzymes and essential substances. Even aloe vera is anti-bacterial agent, while its variant concentration in the fermentation medium has differential impacts on the propagation of micro-organisms.


Copyright © 2019
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Various growth attributes of Escherichia coli cultures supplemented with Aloe vera as substrate

Abrahám E, Hourton-Cabassa C, Erdei L, Szabados L. 2010. Methods for determination of proline in plants. Methods in Molecular Biology (Clifton, N.J.), 639, 317-31. https://doi.org/10.1007 /978-1-60761-702-0_20

Abreu AC, McBain AJ, Simoes M. 2012. Plants as sources of new antimicrobials and resistance-modifying agents. Natural Product Reports 29(9), 1007-10021. https://doi.org/10.1039/c2np20035j

Afiukwa C, Ibiam U, Edeogu C, Nweke F, Chukwu U. 2009. Determination of amylase activity of crude extract from partially germinated mango seeds (Mangifera oraphila). African Journal of Biotechnology 8(14), 3294-3296.

Baek SY, Yun HJ, Choi HS, Hong SB, Koo BS, Yeo SH. 2010. Fermentation product of aloe, method of manufacturing the same and functional foods using the same. Korean Journal of Microbiology and Biotechnology 38, 373-378. https://doi.org/A23 L19/00; A23L33/00

Behrens JT. 1997. Principles and procedures of exploratory data analysis. Psychological Methods 2(2), 131-160. https://doi.org/10.1037/1082-989X.2.2.131

Castañeda GC. 2018. Probiotics: An update. Revista Cubana de Pediatria 90(2), 286-298.

Christov LP, Szakacs G, Balakrishnan H. 1999. Production, partial characterization and use of fungal cellulase-free xylanases in pulp bleaching. Process Biochemistry 34(5), 511-517. https://doi.org/10. 1016/ S0032-9592(98)00117-4

Coman C, Ruginǎ OD, Socaciu C. 2012. Plants and natural compounds with antidiabetic action. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 40(1), 314-325.

Cuvas-Limón R, Julio M, Carlos C, Mario C, Mussatto S, Ruth BC. 2016. Aloe vera and probiotics: A new alternative to symbiotic functional foods. Annual Research and Review in Biology 9(2), 1-11. https://doi.org/10.9734/ARRB/2016/22622

Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28(8), 1333-1335.

Frick O, Wittmann C. 2005. Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis. Microbial Cell Factories 4(30), 1-16. https://doi.org/10.1186/1475-2859-4-30

García-Hernández JL, Valdez-Cepeda RD, Murillo-Amador B, Beltrán-Morales FA, Ruiz-Espinoza FH, Orona-Castillo I, Flores-Hernández A, Troyo-Diéguez E. 2006. Preliminary compositional nutrient diagnosis norms in Aloe vera L. grown on calcareous soil in an arid environment. Environmental and Experimental Botany 97, 154-160.

Grieve CM, Grattan SR. 1983. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant and Soil 70(2), 303-307. https://doi.org/10.1007/BF02374789

Grindlay D, Reynolds T. 1986. The aloe vera phenomenon: A review of the properties and modern uses of the leaf parenchyma gel. Journal of Ethnopharmacology 16(2-3), 117-51. https://doi.org/ 10.1016/0378-8741(86)90085-1

Grundmann O. 2012. Aloe vera gel research review: An overview of its clinical uses and proposed mechanisms of action. Natural Medicine Journal 4(9), 93-97.

Halteh P, Scher RK, Lipner SR. 2016. Over-the-counter and natural remedies for onychomycosis: Do they really work. Cutis 98(5), E16-E25.

He Z. Honeycutt CW. 2005. A modified molybdenum blue method for orthophosphate determination suitable for investigating enzymatic hydrolysis of organic phosphates. Communications in Soil Science and Plant Analysis 36, 1373-1383. https://doi.org/10.1081/CSS-200056954

Henley S. 1983. Principles and procedure of statistics: A biometrical approach. In Computers & Geosciences 9, 275-275. https://doi.org/10.1016/ 0098-3004(83)90054-7

Ira S, Manisha M, Singh GP, Anirudha R. 2014. Quantitative estimation of phenolic and flavonoid content and antioxidant activity of various extracts of different parts of Plumbago zeylanica Linn. International Journal of Drug Development and Research 6(2), 136-140.

Jenkins BM. 2016. Biomass production systems. In Encyclopedia of Agricultural, Food, and Biological Engineering, (2nd Ed). https://doi.org/10.1081/e-eafe2-120006867

Jiang M, Deng K, Jiang C, Fu M, Guo C, Wang X, Guo C, Xin H. 2016. Evaluation of the antioxidative, antibacterial, and anti-inflammatory effects of the aloe fermentation supernatant containing Lactobacillus plantarum HM218749.1. Mediators of Inflammation 2016, 2945650. https://doi.org/10.1155/2016/2945650

John B, Sulaiman CT, George S, Reddy VRK. 2014. Total phenolics and flavonoids in selected medicinal plants from Kerala. International Journal of Pharmacy and Pharmaceutical Sciences 6(1), 406-408.

Kamble RD, Jadhav AR. 2012. Isolation, purification, and characterization of xylanase produced by a new species of Bacillus in solid state fermentation. International Journal of Microbiology 2012(2), 683193. https://doi.org/10.1155/2012/683

Kim YW, Jeong YJ, Kim AY, Son HH, Lee JA, Jung CH, Kim CH, Kim J. 2014. Lactobacillus brevis strains from fermented aloe vera survive gastroduodenal environment and suppress common food borne enteropathogens. PLoS ONE 9(3), e90866. https://doi.org/10.1371/journal.pone.00908

Kumar M, Verma V, Nagpal R, Kumar A, Behare PV, Singh B, Aggarwal PK. 2012. Anticarcinogenic effect of probiotic fermented milk and chlorophyllin on aflatoxin-B1-induced liver carcinogenesis in rats. The British Journal of Nutrition 107(7), 1006-10016. https://doi.org/10. 1017 /S0007114511003953

Kumar M, Verma V, Nagpal R, Kumar A, Gautam SK, Behare PV, Grover CR, Aggarwal PK. 2011. Effect of probiotic fermented milk and chlorophyllin on gene expressions and genotoxicity during AFB 1-induced hepatocellular carcinoma. Gene 490(1-2), 54-59. https://doi.org/10.1016/ j.gene.2011.09.003

Kumar SPK, Bhowmik D, Chiranjib B. 2010. Aloe vera: a potential herb and its medicinal importance. Journal of Chemical and Pharmaceutical Research 2(1), 62-72. https://doi.org/10.1021/acs. jpcc.6b00325

Lakhvinder K. 2017. Fermentation potential of prebiotic juice obtained from natural sources. International Journal of Advance Research 5(8), 1779-1785.

Lovrien R, Matulis D. 2004. Assays for total protein. Current Protocols in Protein Science 1(1), 3-4. https://doi.org/10.1002/0471140864.ps0304s01

Lucas EH. 1944. Determining ascorbic acid in large numbers of plant samples. Industrial Engineering Chemistry and Analytical Edition 16(10), 649-652. https://doi.org/10.1021/i560134a025

Maccaferri S, Klinder A, Cacciatore S, Chitarrari R, Honda H, Luchinat C, Bertini I, Carnevali P, Gibson GR, Brigidi P, Costabile A. 2012. In vitro fermentation of potential prebiotic flours from natural sources: Impact on the human colonic microbiota and metabolome. Molecular Nutrition and Food Research 56(8), 1342-1352. https://doi.org/10.1002/mnfr.201200046

Maenthaisong R, Chaiyakunapruk N, Niruntraporn S, Kongkaew C. 2007. The efficacy of aloe vera used for burn wound healing: A systematic review. Burns 33, 713-718.

Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31(3), 426-428.

Montero G, Stoytcheva M, Gochev VA, Leon J, Zlatev R. 2012. Analytical methods for lipases activity determination: A review. Current Analytical Chemistry 8(3), 400-407. https://doi.org/10.2174/ 157341112801264879

Mukherjee AK, Adhikari H, Rai SK. 2008. Production of alkaline protease by a thermophilic Bacillus subtilis under solid-state fermentation (SSF) condition using Imperata cylindrica grass and potato peel as low-cost medium: Characterization and application of enzyme in detergent formulation. Biochemical Engineering Journal 39(2), 353-361. https://doi.org/10.1016/j.bej.2007.09.017

Nagpal R, Kaur A. 2011. Synbiotic effect of various prebiotics on in vitro activities of probiotic lactobacilli. Ecology of Food and Nutrition 50(1), 63-68. https://doi.org/10.1080/03670244.2011.539161

Nagpal R, Kaur V, Kumar M, Marotta F. 2012. Effect of Aloe vera juice on growth and activities of Lactobacilli in-vitro. Acta Biomedica 52, 321-333.

Nakamura S, Wakabayashi K, Nakai R, Aono R, Horikoshi K. 1993. Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. strain 41M-1. Applied and Environmental Microbiology 294, 349-355.

Paez A, Michael GG, Gonzalez ME, Tschaplinski TJ. 2000. Growth, soluble carbohydrates, and aloin concentration of aloe vera plants exposed to three irradiance levels. Environmental and Experimental Botany 24, 103-154. https://doi.org/10.1016/S0098-8472(00)00062-9

Pârvu M, Pârvu AE. 2011. Antifungal plant extracts. Science Against Microbial Pathogens. Communicating Current Research And Technological Advances 5, 2041-2046.

Pisoschi AM, Negulescu GP. 2012. Methods for total antioxidant activity determination: A review. Biochemistry and Analytical Biochemistry 3(2), e151. https://doi.org/10.4172/2161-1009.1000106

Quezada MP, Salinas C, Gotteland M, Cardemil L. 2017. Acemannan and fructans from aloe vera (Aloe barbadensis Miller) plants as novel prebiotics. Journal of Agricultural and Food Chemistry 65(46), 10029-10039. https://doi.org/10. 1021/ acs.jafc.7b04100

Quinn GP, Keough MJ. 2002. Experimental design and data analysis for biologists. In Experimental design and data analysis for biologists 277(2), 197-198. https://doi.org/10.1016/S0022-0981(02)00278-2

Radha MH, Laxmipriya NP. 2015. Evaluation of biological properties and clinical effectiveness of Aloe vera: A systematic review. Journal of Traditional and Complementary Medicine 7(1), 203-209.

Rosca-Casian O, Parvu M, Vlase L, Tamas M. 2007. Antifungal activity of Aloe vera leaves 78(3), 219-222. Fitoterapia. https://doi.org/10.1016/j.fitote.

Saibuatong O, Phisalaphong M. 2010. Novo aloe vera-bacterial cellulose composite film from biosynthesis. Carbohydrate Polymers 79(2), 455-460. https://doi.org/10.1016/j.carbpol.2009.08.039

Sierra-García GD, Castro-Ríos R, González-Horta A, Lara-Arias J,  Chávez-Montes A. (2014). Acemannan, an extracted polysaccharide from Aloe vera: A literature review. Natural Product Communications 9(8), 1217-1221.

Strubinger A, Oliveros AR, Araque MA, Guerra J. 2017. Assessment of the energy recovery of aloe vera solid residues by pyrolysis and hydrothermal conversion. Chemical Engineering Transactions 50, 235-240. https://doi.org/10.3303/CET1757004

Trabold T, Babbitt CW. 2017. Sustainable food waste-to-energy systems, Academic Press (1st Ed). https://doi.org/10.1016/c2016-0-00715-5

Udatha DBRKG, Sugaya N, Olsson L, Panagiotou G. 2012. How well do the substrates KISS the enzyme? Molecular docking program selection for feruloyl esterases. Scientific Reports 2, 323. https://doi.org/10.1038/srep00323

Ueno H. 2000. Enzymatic and structural aspects on glutamate decarboxylase. Journal of Molecular Catalysis – B Enzymatic 10(1), 67-79. https://doi.org/ 10.1016/ S1381-1177(00)00114-4

Valadez-Bustos MG, Aguado-Santacruz GA, Tiessen-Favier A, Robledo-Paz A, Muñoz-Orozco A, Rascón-Cruz Q, Santacruz-Varela A. 2016. A reliable method for spectrophotometric determination of glycine betaine in cell suspension and other systems. Analytical Biochemistry 498, 47-52. https://doi.org/10.1016/j.ab.2015.12.015

Vijayaraghavan P, Lazarus S, Vincent SGP. 2014. De-hairing protease production by an isolated Bacillus cereus strain AT under solid-state fermentation using cow dung: Biosynthesis and properties. Saudi Journal of Biological Sciences 44, 377-385. https://doi.org/10.1016/j.sjbs.2013.04.010

Wang H, Chung J, Chang S, Wu L, Ho C. 2009. Aloe-emodin effects on arylamine N -Acetyltransferase activity in the bacterium Helicobacter pylori. Planta Medica 50(I), 2-9. https://doi.org/10.1055/s-2006.

Wynn RL. 2005. Aloe vera gel: Update for dentistry. General Dentistry 53(1), 6-9.

Young RJ, Huffman S. 2003. Probiotic use in children. Journal of Pediatric Health Care 17(6), 277-283. https://doi.org/10.1016/S0891-5245(03)00070-1


Style Switcher

Select Layout
Chose Color
Chose Pattren
Chose Background