Zinc oxide nanoparticles (ZnO NPs) induced nephrotoxicity in male sprague dawley rats

Paper Details

Research Paper 01/11/2018
Views (602)
current_issue_feature_image
publication_file

Zinc oxide nanoparticles (ZnO NPs) induced nephrotoxicity in male sprague dawley rats

Sana Kausar, Farhat Jabeen, Salma Sultana, Azhar Rasul
Int. J. Biosci. 13(5), 457-463, November 2018.
Copyright Statement: Copyright 2018; The Author(s).
License: CC BY-NC 4.0

Abstract

Nano size particles (<100nm) have various applications in electronics, coating, cosmetics, packaging and biotechnology. Zinc Oxide nanoparticles (ZnO NPs) are being used in ceramics, leather manufacturing, plastics, rubber, glass, fire retardants and batteries along with having antimicrobial and anticancerous properties. In present research, 25 post weaning male Sprague Dawley rats of similar weight were procured from the animal house of Government College University Faisalabad after approval of the ethical committee on animal experimentation. Rats were kept in 5 cages (n=5) and varying levels of ZnO NPs were injected intraperitoneally (i.p.) for 28 days on alternate days to treated groups at the dose of either 10 or 20 or 30 mg/kg and named as group one (G1), two (G2) and three (G3), respectively for the assessment of toxicity for better understanding of precautionary measures in near future. Without any treatment groups i.e., control (C) and saline(S) received normal diet and saline water (0.9% sodium chloride), respectively. Histological changes were investigated in kidney tissues of all groups. Groups receiving 10 and 20mg/kg of NPs showed moderate pathological changes like atrophic glomerulus, inter-tubular space, degeneration of tubular epithelium and tubules and accumulation of ZnONPs. While, G3 group showed congestion, accumulation of RBCs and hemorrhages in kidney tissues along with above noticed variations. Whereas, no alterations were seen in control groups (C &S). It is concluded that ZnO NPs at higher concentration are more toxic to Sprague Dawley rats than at lower concentrations.

Abbasalipourkabir R, Moradi H, Zarei S, Asadi S, Salehzadeh A, Ghafourikhosroshahi A, Ziamajidi N. 2015. Toxicity of zinc oxide nanoparticles on adult male Wistar rats. Food and Chemical Toxicology 84, 154-160. http://dx.doi.org/10.1016/j.fct.2015.08.019.

Ahmadi F, Ebrahimnezhad Y, Sis NM, Ghalehkandi JG. 2013. The effects of zinc oxide nanoparticles on performance, digestive organs and serum lipid concentrations in broiler chickens during starter period. International Journal of Biosciences 3(7), 23-29. http://dx.doi.org/10.12692/ijb/3.7.23-29.

Alferah MAZ. 2015. Renal toxicity of Zinc oxide nanoparticles (ZnO NPs) of male wistar rats. International Journal of Science and Research 7(2), 2319-7064. http://dx.doi.org/10.21275/16021801.

Baek M, Chung HE, Yu J, Lee JA, Kim TH, Oh JM, Choy JH. 2012. Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles. International Journal of Nanomedicine 7, 3081. PMID: 22811602. http://dx.doi.org/10.2147/IJN.S325.93

Esmaeillou M, Moharamnejad M, Hsankhani R, Tehrani AA, Maadi H. 2013. Toxicity of ZnO nanoparticles in healthy adult mice. Environmental Toxicology and Pharmacology 35(1), 67-71. http://dx.doi.org/10.1016/j.etap.2012.11.003.

Haq ANU, Nadhman A, Ullah I, Mustafa G, Yasinzai M, Khan I. 2017. Synthesis approaches of Zinc Oxide nanoparticles: The dilemma of ecotoxicity. Journal of Nanomaterials 1-14. https://doi.org/10.1155/2017/8510342.

Khatoon N, Mazumder JA, Sardar M. 2017. Biotechnological applications of green synthesized silver nanoparticles. Journal of Nano sciences Current Research 2(107), 2. http://dx.doi.org/10.4172/2572-0813.1000107.

Khorsandi L, Heidari-Moghadam A, Jozi Z. 2018. Nephrotoxic effects of low-dose zinc oxide nanoparticles in rats. Journal of Nephropathology 7(3), 158-165. http://dx.doi.org/10.15171/jnp.2018.35.

Lin YF, Chiu IJ, Cheng FY, Lee YH, Wang YJ, Hsu YH, Chiu HW. 2015. The role of hypoxia-inducible factor-1α in zinc oxide nanoparticle-induced nephrotoxicity in vitro and in vivo. Particle and Fibre Toxicology 13(1), 52. https://doi.org/10.1186/s12989-016-0163-3.

Nawaz HR, Solangi BA, Zehra B, Nadeem U. 2011. Preparation of nano zinc oxide and its application in leather as a retanning and antibacterial agent. Canadian Journal on Scientific and Industrial Research 2, 164-170.

Noori A, Karimi F, Fatahian S, Yazdani F. 2014. Effects of zinc oxide nanoparticles on renal function in mice. International Journal of Biosciences 5(9), 140-146. http://dx.doi.org/10.12692/ijb/5.9.140-146.

Reddy KY, Ch S, Sridhar Y, Shankaraiah P. 2014. Naringenin prevents the zinc oxide nanoparticles induced toxicity in swiss albino mice. Journal of Pharmacology and Clinical Toxicology 2(1), 1021.

Siddiqi KS, Ur-Rahman A, Husen A. 2018. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Research Letters 13(1), 141. http://dx.doi.org/10.1186/s11671-018-2532-3.

Wang C, Lu J, Zhou L, Li J, Xu J, Li W, Wang T. 2016. Effects of long-term exposure to zinc oxide nanoparticles on development, zinc metabolism and biodistribution of minerals (Zn, Fe, Cu, Mn) in mice. PloS one 11(10), e0164434. https://doi.org/10.1371/journal.pone.0164434

Yah CS, Simate GS, Iyuke SE. 2012.Nanoparticles toxicity and their routes of exposures. Pakistan Journal of Pharmaceutical Sciences 25(2), 477-491.

Related Articles

Implications of aberrant glycosylation on age-related disease progression

Tahmid Ahmad Patwary, Mukramur Rahman, Md. Nafis Fuad Prottoy, Sayad Md. Didarul Alam, Int. J. Biosci. 27(2), 176-188, August 2025.

Design and development of solar powered water sprayer: A green technology innovation

Lorenzo V. Sugod, Int. J. Biosci. 27(2), 159-175, August 2025.

Knowledge, attitudes, practices, and social awareness regarding SARS-CoV-2 infection in the kyrgyz population in the post-pandemic period

Mirza Masroor Ali Beg, Haider Ali, Yahya Nur Ahmed, Yavuz Gunduz, Hafsa Develi, Tilekeeva UM, Int. J. Biosci. 27(2), 151-158, August 2025.

Tumor suppressing ability of myrtenal in DMBA-induced rat mammary cancer: A biochemical and histopathological evaluation

Manoharan Pethanasamy, Shanmugam M. Sivasankaran, Saravanan Surya, Raju Kowsalya, Int. J. Biosci. 27(2), 141-150, August 2025.

Assessing tree diversity in cashew plantations: Environmental and agronomic determinants in buffer zones of Mont Sangbé National Park, western Côte d’Ivoire

Kouamé Christophe Koffi, Kouakou Hilaire Bohoussou, Serge Cherry Piba, Naomie Ouffoue, Sylvestre Gagbe, Alex Beda, Adama Tondossama, Int. J. Biosci. 27(2), 122-133, August 2025.

Anthelmintic potential of powdered papaya seed Carica papaya in varying levels against Ascaridia galli in broiler chicken

Roniemay P. Sayson, Mylene G. Millapez, Zandro O. Perez, Int. J. Biosci. 27(2), 114-121, August 2025.

Valorization of fish scale waste for the synthesis of functional gelatin-based biopolymers

N. Natarajan Arun Nagendran, B. Balakrishnan Rajalakshmi, C. Chellapandi Balachandran, Jayabalan Viji, Int. J. Biosci. 27(2), 102-113, August 2025.