Characterization of exopolysaccharide producing LAB isolated from Zoom-koom, a cereal-based traditional beverage from Burkina Faso

Paper Details

Research Paper 01/12/2017
Views (403) Download (16)
current_issue_feature_image
publication_file

Characterization of exopolysaccharide producing LAB isolated from Zoom-koom, a cereal-based traditional beverage from Burkina Faso

Fidèle Wend-bénédo Tapsoba, Hagrétou Sawadogo-Lingani, Rossana Coda, Diarra Compaore-Sereme, Katina Katina, Donatien Kabore, HadouHaro, Mamoudou Hama Dicko, Ndegwa Henry Maina
Int. J. Biosci.11( 6), 45-60, December 2017.
Certificate: IJB 2017 [Generate Certificate]

Abstract

Zoom-koom is a traditional fermented beverage from Burkina Faso produced from millet or sorghum grains. A total of 33 Lactic acid bacteria (LAB) that produce exopolysaccharides (EPS) were isolated from zoom-koom and characterized in order to select the most efficient as starter cultures to improve the quality of zoom-koom. Physiological and morphological characteristics were determined using growth tests and microscopic observation, respectively. Activities of starch degrading enzymes (amylases) were performed using biochemical methods. Antimicrobial activities were determined using disc diffusion assay and overlay method. Genotypic characterization and identification of selected LAB EPS synthetizing isolates which were able to produce antimicrobial compound were performed through 16S rRNA sequencing. EPSs Structures of selected LAB isolates were determined using NMR spectroscopy. Among LAB isolates76% was hetero-fermentative while the other was homo-fermentative. Some isolates (15%) could grow in the presence of bile and esculin and 12% were able to grow on MRS-starch. Although all the isolates were able to produce EPSs, only 6% were efficient producers. Among the screened LAB isolates, 7had inhibitory activities against Escherichiacoli81 nr.149 SKN 541, Pseudomonas aeruginosa ATCC and Salmonella typhimurium O:1036340P/t49. In addition 6 isolates displayed antifungal activities against Aspergillus fumugatus, Aspergillus flavus and Aspergillus niger. The 16S rRNA sequencing showed that most of the isolates were clustered with Weissella cibaria/confusa and the others were clustered with Lactobacillus plantarum/pentosus and Lactococcus lactis/garvieae. The NMR spectroscopy showed that excreted EPSs are ramified glucanpolyaccharides containing α-(1®3) and α-(1®6) linkages, where the later are the main chains.

VIEWS 32

Abbas SZ, Hussain K, Hussain Z, Ali R, Abbas T. 2016. Anti-Bacterial Activity of Different Soaps Available in Local Market of Rawalpindi (Pakistan) against Daily Encountered Bacteria. Pharmaceutica Analytica Acta 7, 522. http://dx.doi.org/10.4172/2153-2435.1000522

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25(17), 3389–3402.

Ayad EHE, Nashat S, El-Sadek N, Metwaly H, El-Soda M. 2004. Selection of wild lactic acid bacteria isolated from traditional Egyptian dairy products according to production and technological criteria. Food Microbiology 21, 715–725.

Barro N, Ouédraogo O, Abdoul BR, Nikiema PA, Ilboudo AJ, Ouattara AS, Ouattara CAT, Traoré AS. 2007. Impact de la température de vente sur l’altération de la qualité microbiologique de quelques aliments de rue à Ouagadougou (Burkina Faso). Journal des sciences 7(2), 25-32.

Bejar W, Gabriel V, Amari M, Morel S, Mezghani M, Maguin E. 2013.Characterization of glucansucrase and dextran from Weissella sp. TN610 with potential as safe food additives. International. Journal of Biological. Macromolecules52(2013), 125–132. http://dx.doi.org/10.1016/j.ijbiomac.2012.09.014

Besadjo-Tchamba G, Bawa IH, Nzouankeu A, Bagré TS, Dembélé R, Bonkoungou IJO, Zongo C, Savadogo A, Traoré AS, Barro N. 2014.Occurrence and antimicrobial susceptibility of Escherichia coli and Salmonella spp. isolated from “zoom-koom” beverage and ice in Ouagadougou, Burkina Faso. African Journal of Microbiology Research 8(35), 3243-3249. http://dx.doi.org/10.5897/AJMR2014.7014

Caggianiello G, Kleerebezem M, Spano G. 2016.Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. Applied Microbiology and Biotechnology 100(8), 3693-3711. http://dx.doi.org/10.1007/s00253-016-7471-2

Coda R, Di Cagno R, Gobbetti M, Rizzello CG. 2014. Sourdough lactic acid bacteria: exploration of non-wheat cereal-based fermentation. Food Microbiology 37, 51–58. http://dx.doi.org/10.1016/j.fm.2013.06.018.

Coda R, Kianjam M, Pontonio E, Verni M, Di Cagno R, Katina K, Rizzello CG, Gobbetti M. 2017. Sourdough-type propagation of faba bean flour: Dynamics of microbial consortia and biochemical implications. International Journal of Food Microbiology 248, 10–21. http://dx.doi.org/10.1016/j.ijfoodmicro.2017.02.009

Compaore CS, Nielsen DS, Sawadogo-Lingani H, T.S. Berner TS, K.F. Nielsen4 KF, Adimpong DB, Diawara D, Ouedraogo GA, Jakobsen M, Thorsen L. 2013. Bacillus amyloliquefaciens ssp. plantarum strains as potential protective starter cultures for the production of Bikalga, an alkaline fermented food. Journal of Applied Microbiology 115, 133-146. http://dx.doi.org/10.1111/jam.12214

Compaore H, Sawadogo-Lingani H, Guira F, Samandoulougou S, Savadogo A, Dianou D, Traore AS. 2016. Enhancement of antibacterial compounds production by Aspergillus flavus and Penicillium citrinum isolated from locals foods in Bobo Dioulasso and Ouahigouya, Burkina Faso. European Journal of Pharmaceutical and Medical Research3(10), 354-363.

De Angelis M, Siragusa S, Berloco M, Caputo L, Settanni L, Alfonsi G, Amerio M, Grandi A, Ragni A, Gobbetti M. 2006. Selection of potential probiotic lactobacilli from pig feces to be used as additives in pelleted feeding. Research. Microbiology 157, 792–801. http://dx.doi.org/10.1016/j.resmic.2006.05.003

De Vuyst L, Degeest B. 1999. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiology Reviews 23, 153–177.

De Vuyst L, Van Kerrebroeck S, HarthH, Huys G, Daniel HM, Weckx S. 2014. Microbial ecology of sourdough fermentations: diverse or uniform. Food Microbiology 37, 11–29. http://dx.doi.org/10.1016/j.fm.2013.06.002

Franz CMAP, Huch M, Mathara JM, Abriouel H, Benomar N, Reid G, Galvez A, Holzapfel WH. 2014. African fermented foods and probiotics. International Journal of Food Microbiology 190, 84–96. http://dx.doi.org/10.1016/j.ijfoodmicro.2014.08.033

Fusco V, Quero M, Gyu-Sung C, Kabisch J, Meske D, Neve H, Bockelmann W and Franz CMAP. 2015. The genus Weissella: taxonomy, ecology and biotechnological potential. Front Microbiology 6, 155. http://dx.doi.org/10.3389/fmicb.2015.00155.

Gonzâlez L, Sandoval H, Sacristân N, Castro JM, Fresno JM, Tornadijo ME. 2006. Identification of lactic acid bacteria isolated from Genestoso cheese throughout ripening and study of their antimicrobial activity. Food Control 18, 716-722.

Gouy M, Guindon S, Gascuel O. 2010. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution 27(2), 221-224. http://dx.doi.org/10.1093/molbev/msp259

Hweh Fen Goh, Koshy Philip.2015. Purification and Characterization of Bacteriocin Produced by Weissella confusa A3 of Dairy Origin. PLoS One. 10(10), e0140434. https://doi.org/10.1371/journal.pone.0140434

Kajala I, Shi Q, Nyyssölä A, Maina NH, Hou Y, Katina K. 2015. Cloning and characterization of a Weissella confuse dextransucrase and its application in high fibre baking. PLoS ONE 10:e0116418. http://dx.doi.org/10.1371/journal.pone.0116418

Katina K, Maina NH, Juvonen R, Flander L, Johansson L, Virkki L. 2009. In situ production and analysis of Weissella confusa dextran in wheat sourdough. Food Microbiology 26, 734–743. http://dx.doi.org/10.1016/j.fm.2009.07.008.

Kogno E, Soncy K, Taale E, Anani K, Karou SD, Ameyapoh Y. 2017. Molecular characterization of lactic acid bacteria involved in Togolese traditional fermented cereal foods. International Journal of Recent Advances in Multidisciplinary Research 4(2), 2308-2312.

Kostinek M, Specht I, Edward VA, Schillinger U, Hertel C, Holzapfel WH, Franz CMAP. 2005. Diversity and technological properties of predominant lactic acid bacteria from fermented cassava used for preparation of Gari, a traditional African food. Systematic and Applied Microbiology 28, 527–540.

Laref Nora .2014.L’étude de l’activité antifongique des lactobacilles et leur effet sur la croissance d’Aspergillus sp. Thèse de doctorat de troisième cycle LMD, spécialité: contrôle microbiologique et  hygiène alimentaire. Faculté des sciences, département de biologie, Université d’Oran, Algérie, p.1-78.

Liu W, Pang H, Zhang H, Cai Y. 2014. Biodiversity of Lactic Acid Bacteria. In: Zhang H, Cai Y (Eds), Lactic Acid Bacteria Fundamentals and Practice. Springer Netherlands, p. 103–203.

Magnusson J, Schnurer J. 2001. Lactobacillus coryniformis subsp. Coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Applied and Environmental. Microbiology 67, 1-5.

Magnusson J, Ström K, Roos S, Sjögren J, Schnürer J. 2003. Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiology Letters 219(1),129-35.

Maina NH, Juvonen M, Domingues RM, Virkki L, Jokela J, Tenkanen M. 2013.Structural analysis of linear mixed-linkage glucooligosaccharides by tandem mass spectrometry. Food Chemistry 136, 1496–1507. http://dx.doi.org/10.1016/j.foodchem.2012.09.075

Maina NH, Tenkanen M, Maaheimo H, Juvonen R, Virkki L. 2008. NMR spectroscopic analysis of exopolysaccharides produced by Leuconostoc citreum and Weissella confusa. Carbohydrate Research 343, 1446–1455. http://dx.doi.org/10.1016/j.carres.2008.04.012.

Maina NH, Virkki L, Pynnönen H, Maaheimo H, Tenkanen M. 2011. Structural analysis of enzyme-resistant isomaltooligosaccharides reveals the elongation of α-(1→3)-linked branches in Weissella confusa dextran. Biomacromolecules 12, 409–418.

Matamoros S. 2008. Caractérisation de bactéries lactiques psychrotrophes en vue de leur utilisation dans la biopréservation des aliments. Étude physiologique et moléculaire des mécanismes d’adaptation au froid. Thèse de Doctorat. Université de Nantes, p.159.

Mathara JM, Schillinger U, Kutima PM, Mbugua SK, Holzapfel WH. 2004. Isolation, identification and characterization of the dominant microorganisms of kulenaoto: The Maasai traditional fermented milk in Kenya. International Journal of Food Microbiology 94, 269–278. http://dx.doi.org/10.1016/j.ijfoodmicro.2004.01.008

Messens W, De Vuyst L. 2002.Inhibitory substances produced by Lactobacilli isolated from sourdoughs-a review. International Journal of Food Microbiology 72(1-2), 31-43.

Minervini F, Lattanzi A, De Angelis M, Di Cagno R, Gobbetti M. 2012. Influence of artisan bakery- or laboratory-propagated sourdoughs on the diversity of lactic acid bacterium and yeast microbiotas. Applied and Environmental. Microbiology 78, 5328–5340.

Morlon-Guyot J, Guyot JP, Pot B, Jacobe de Haut I, Raimbault M. 1998. Lactobacillus manihotivorans sp. nov., a new starch-hydrolysing lactic acid bacterium isolated during Cassava sour starch fermentation. International Journal of Systematic Bacteriology 48(4), 1101-1109.

Mostefaoui A, Hakem A, Yabrir B, Boutaiba S, Badis A. 2014. Screening for exopolysaccharide-producing strains of thermophilic lactic acid bacteria isolated from Algerian raw camel milk. African Journal of Microbiology Research. 8(22),2208-2214. http://dx.doi.org/10.5897/AJMR2014.6759

Olanrewaju O. 2007. Antagonistic effect of Lactobacillus isolates from Kunnu and Cowmilk on selected pathogenic microorganisms. Internet Journal of Food Safety 9, 63-66.

Osimani A, Garofalo C, Aquilanti L, Milanoviæ V, Clementi F. 2015. Unpasteurised commercial boza as a source of microbial diversity. International Journal of Food Microbiology 194C, 62–70.

Petronella J, Looijesteijn Boels IC, Kleerebezem M, Hugenholtz J. 1999.Regulation of Exopolysaccharide Production by Lactococcus lactis subsp. cremoris by the Sugar Source. Applied and Environmental Microbiology 65(11), 5003–5008.

Sanni AI, Morlon-Guyot J, Guyot JP. 2002.New efficient amylase-producing strains of Lactobacillus plantarum and Lact. fermentum isolated from different Nigeran traditional fermented foods. International Journal of Food Microbiology 72, 53–62. http://dx.doi.org/10.1016/S0168-1605(01)00607-9

Savadogo A, Ouattara CAT, Bassole IHN, Traore AS. 2004. Antimicrobial activities of lactic acid bacteria strains isolated from Burkina Faso fermented milk. Pakistan Journal of Nutrition 3 (3), 174-179.

Sawadogo-Lingani H, Diawara B, Traore AS, Jakobsen M. 2008. Technological properties of Lactobacillus fermentum involved in the processing of dolo and pito, West African sorghum beers, for the selection of starter cultures. Journal of Applied Microbiology 104(3), 873–882. http://dx.doi.org/10.1111/j.1365-2672.2007.03638.x

Shukla S, Shi Q, Maina NH, Juvonen M, Goyal A. 2014.Weissella confusa Cab3 dextransucrase: Properties and in vitro synthesis of dextran and glucooligosaccharides. Carbohydrate Polymers 101, 554-564. http://dx.doi.org/10.1016/j.carbpol.2013.09.087

Sikkema J, Oba T. 1998. Extracellular polysaccharides of lactic acid bacteria. Snow Brand R&D Rep 107, 1–31.

Soma. 2014. Utilisation de cultures de lactobacillus  fermentum  dans la technologie du zoom-koom, une boisson locale à base de mil (Pennisetum glaucum) pour  améliorer  sa qualite  nutritionnelle, sanitaire et organoleptique. Mémoire de fin d’études, en vue de l’obtention du master en biologie appliquée  et modélisation des systèmes biologiques. Institut du développement rural (IDR),p. 1-85.

Soma MAAR,  Tapsoba FW, Kaboré D, Toguyeni A, Tankoano A, Dicko MH Sawadogo-Lingani H. 2017.Etude de la production, de la commercialization et de la consommation du zoom-koom vendu dans la ville de Ouagadougou au Burkina Faso. Accepted for publication in International Journal of Biological and Chemical Sciences (IJBCS).

Songre-Ouattara LT, Mouquet-Rivier C, Icard-Verniere C, Humblot C, Diawara B, Guyot JP. 2008. Enzyme activities of lactic acid bacteria from a pearl millet fermented gruel (ben-saalga) of functional interest in nutrition. International Journal of Food Microbiology 128, 395-400. http://dx.doi.org/10.1016/j.ijfoodmicro.2008.09.004

Sunday PU, Nyaudoh UN, Etido JU. 2011. Microbiological quality and safety evaluation of fresh juices and edible ice sold in Uyo Metropolis, South-South, Nigeria. Internet Journal of Food Safety 13, 374-378.

Tapsoba FW, Sawadogo-Lingani H, Kabore D, Compaore-Sereme D, Dicko MH. 2017. Effect of the fermentation on the microbial population occurring during the processing of zoom-koom, a traditional beverage in Burkina Faso. African Journal of Microbiology Research 11(26), 1075-1085. http://dx.doi.org/10.5897/AJMR2017.8591

Tinzl-Malang S, Maina NH, Schwab C, Tenkanen M, Lacroix C. 2015. Characterization of exopolysaccharide and ropy capsular polysaccharide formation by Weissella. Food Microbiology 46, 418-27. http://dx.doi.org/10.1016/j.fm.2014.08.022.

Vinderola G, Perdigon G, Duarte J, Famworth E, Matar C. 2006. Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine 36, 254–260. http://dx.doi.org/10.1016/j.cyto.2007.01.003

Wolter A, Hager AS, Zannini E, Czerny M, Arendt EK. 2014. Influence of dextran-producing Weissella cibaria on baking properties and sensory profile of gluten-free and wheat breads. International Journal of Food Microbiology 172, 83–91. http://dx.doi.org/10.1016/j.ijfoodmicro.2013.11.015

Yuksekdag ZN, Aslim B. 2010.Assessment of potential probiotic and starter properties of Pediococcus spp. isolated from Turkish-Type fermented sausages (Sucuk). Journal of Microbiology and Biotechnology 20(1), 161-168.

Zannini E, Mauch A, Galle S, Gänzle M, Coffey A, Arendt EK. 2013. Barley malt wort fermentation by exopolysaccharide-forming Weissella cibaria MG1 for the production of a novel beverage. Journal of Applied Microbiology 115, 1379–1387. http://dx.doi.org/10.1111/jam.12329

Zannini E, Waters DM, Coffey A, Arendt EK. 2016. Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Applied Microbiology and Biotechnology 100, 1121–1135. http://dx.doi.org/10.1007/s00253-015-7172-2