Estimation of various properties of bioactive compounds isolated from Catharanthus roseus leaf
Paper Details
Estimation of various properties of bioactive compounds isolated from Catharanthus roseus leaf
Abstract
Lupeol, stigmasterol, ursolic acid, myricetin, and naringenin were isolated from n-hexane, ethyl acetate, and methanolic extracts of Catharanthus roseus leaves to assess their free radical scavenging, cytotoxic, and antibacterial activities. The determination of the free radical scavenging activity (FRSA) of the isolated compounds was performed by using 2,2-diphenyl-1-picrylhydrazyl (DPPH) method along with UV-Visible spectroscopy. The brine shrimp lethality bioassay (BSLT) method was applied to determine cytotoxic activity. For antibacterial screening, the disk diffusion method was employed, with streptomycin (10 μg/disc) serving as a control. Among the compounds, myricetin exhibited noteworthy free radical scavenging activity with an IC50 6.18 µg/mL. Ursolic acid had a strong cytotoxic effect in the brine shrimp lethality bioassay, with an LC50 of 0.72. Naringenin outperformed streptomycin in terms of antibacterial activity against the pathogenic microorganisms that have been tested. The FRSA, cytotoxicity, and antibacterial activity of isolated compounds were consistent with the traditional uses of this plant.
Ali I, Chaudry MI. 1985. Isolation and 13C-NMR studies on cathovaline on alkaloid from leaves of C. roseus. Planta Medica 51(5), 447-448.
Auriola S, Naaranlahti T, Kostiainen R, Lapinjoki S. 1990. Identification of indole alkaloids of Catharanthus roseus with liquid chromatography/mass spectrometry using collision‐induced dissociation with the thermospray ion repeller. Biomedical & Environmental Mass Spectrometry 19, 400-404.
Barry A. 1986. Procedure for testing antimicrobial agents in agar media: theoretical considerations. Antibiotics in Laboratory Medicine 1, 1-26.
Bauer AW, Kirby WM, Sherris JC, Turck M. 1966. Antibiotic susceptibility testing by a standardized single disc method. American Journal of Clinical Pathology 45, 493-496.
Bendich A, Langseth L. 1995. The health effects of vitamin C supplementation: a review. Journal of the American College of Nutrition 14(2), 124-136.
Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181, 1199-1200.
Bruneton J. 1999. Pharmacognosy: phytochemistry, medicinal plants. Lavoisier Technique & Documentation, Paris. (In French).
Farnsworth NR, Svoboda GH, Blomster RN. 1968. Antiviral activity of selected Catharanthus alkaloids. Journal of Pharmaceutical Sciences 57(12), 2174-2175.
Filippini R, Caniato R, Piovan A, Cappelletti EM. 2003. Production of anthocyanins by Catharanthus roseus. Fitoterapia 74(1-2), 62-67.
Forsyth WGC, Simmonds NW. 1957. Anthocyanidins of Lochnera rosea. Nature 180, 247.
Ghisalberti E. 2007. Detection and isolation of bioactive natural products. Bioactive Natural Products, CRC Press, pp. 25-90.
Huxley AJ, Griffiths M. 1992. The New Royal Horticultural Society Dictionary of Gardening. Stockton Press.
Jaleel CA, Gopi R, Panneerselvam R. 2009. Alterations in non-enzymatic antioxidant components of Catharanthus roseus exposed to paclobutrazol, gibberellic acid, and Pseudomonas fluorescens. Plant Omics 2, 30-40. DOI: 10.1007/s11738-007-0025-6.
Kaushik P, Dhiman AK. 1999. Medicinal plants and raw drugs of India. Bishen Singh Mahendra Pal Singh.
Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE, McLaughlin JL. 1982. Brine shrimp: a convenient general bioassay for active plant constituents. Planta Medica 45(1), 31-34. DOI: 10.1055/s-2007-971236.
Miller HE, Rigelhof F, Marquart L, Prakash A, Kanter M. 2000. Antioxidant content of whole grain breakfast cereals, fruits, and vegetables. Journal of the American College of Nutrition 19(3), 312S-319S. DOI: 10.1080/07315724.2000.10718966.
Mishra P, Uniyal G, Sharma S, Kumar S. 2001. Pattern of diversity for morphological and alkaloid yield-related traits among the periwinkle Catharanthus roseus accessions collected from in and around the Indian subcontinent. Genetic Resources and Crop Evolution 48(3), 273-286. DOI: 10.1023/A:1011218329118.
Nishibe S, Takenaka T, Fujikawa T, Yasukaw K, Takido M, Morimitsu Y, Hirota A, Kawamura T, Noro Y. 1996. Bioactive phenolic compounds from Catharanthus roseus and Vinca minor. Natural Medicines 50, 378-383. DOI: 10.1007/s11101-006-9039-8.
Oladimeji H, Nia R, Essien E. 2006. In-vitro anti-microbial and brine-shrimp lethality potential of the leaves and stem of Calotropis procera (Ait). African Journal of Biomedical Research 9(3), 205-211. https://doi.org/10.4314/ajbr.v9i3.48906.
Phondke G. 1992. The Wealth of India, Raw Materials, Revised Edition, Vol. VIII, NISCAIR, CSIR, New Delhi, 162.
Rahman A, Alam M, Ali I, Rehman I, Haq I. 1988. Leurosinone: a new binary indole alkaloid from Catharanthus roseus. Journal of the Chemical Society. Perkin Transactions 1 1, 2175-2178. https://doi.org/10.1039/P19880002175.
Rahman A, Ali I, Bashir M. 1984. Isolation of rhazinal from the leaves of C. roseus. Journal of Natural Products 47(1), 389. https://doi.org/10.1021/np50032a032.
Rahman A, Bashir M, Hafeez M, Perveen N, Fatima J. 1983. 16-Epi-19-S-vindlinine, an indoline alkaloid from C. roseus. Planta Medica 47, 246-247. DOI: 10.1055/s-2007-970000.
Rahman A, Fatima J, Albert K. 1984. Isolation and structure of rosicine from Catharanthus roseus. Tetrahedron Letters 25(52), 6051-6054. DOI: 10.1016/S0040-4039%2801%2981759-7.
Rechner AR, Kuhnle G, Bremner P, Hubbard GP, Moore KP, Rice-Evans CA. 2002. The metabolic fate of dietary polyphenols in humans. Free Radical Biology and Medicine 33, 220-235. http://dx.doi.org/10.1016/S0891-5849(02)00877-8.
Reiser MJ, Gu Z-M, Fang X-P, Zeng L, Wood KV, McLaughlin JL. 1996. Five novel mono-tetrahydrofuran ring acetogenins from the seeds of Annona muricata. Journal of Natural Products 59(2), 100-108. DOI: 10.1021/np960037q.
Svoboda G, Blake DA. 1975. The phytochemistry and pharmacology of Catharanthus roseus (L.) G. Don. The Catharanthus Alkaloids, 45-83.
Zhao G, Hui Y, Rupprecht JK, McLaughlin JL, Wood KV. 1992. Additional bioactive compounds and trilobacin, a novel highly cytotoxic acetogenin, from the bark of Asimina triloba. Journal of Natural Products 55(3), 347-356. DOI: 10.1021/np50081a011.
Zhao J, Verpoorte R. 2007. Manipulating indole alkaloid production by Catharanthus roseus cell cultures in bioreactors: from biochemical processing to metabolic engineering. Phytochemistry Reviews 6(2), 435-457. DOI: 10.1007/s11101-006-9050-0.
Shahin Aziz, Kousik Saha (2024), Estimation of various properties of bioactive compounds isolated from Catharanthus roseus leaf; IJB, V25, N6, December, P330-337
https://innspub.net/estimation-of-various-properties-of-bioactive-compounds-isolated-from-catharanthus-roseus-leaf/
Copyright © 2024
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0