Groundnut (Arachis hypogaea L.) presents many similar responses to drought and salinity, two water stress factors

Paper Details

Review Paper 24/07/2025
Views (5)
current_issue_feature_image
publication_file

Groundnut (Arachis hypogaea L.) presents many similar responses to drought and salinity, two water stress factors

Mouniratou Zoungrana, Moumouni Konate, Jacob Sanou, Pauline Bationo Kando
Int. J. Biosci. 27(1), 386-404, July 2025.
Copyright Statement: Copyright 2025; The Author(s).
License: CC BY-NC 4.0

Abstract

The current trend of climate change revived researchers’ interest in the study of exacerbated abiotic constraints that hamper crop production, such as drought and salinity. Although they are distinct stress factors, both drought and salinity result in water stress for plants. Water stress is an environmental constraint that threatens crop production in many regions of the planet. Counterintuitively, drought or lack of sufficient water in the plant root environment is not the sole cause of water stress, which also results from the difficulty for the plant to take-up water due to salinity.  However, it is not clear whether plants respond likewise to drought-induced and salinity-induced water stress. Therefore, comparing these two sources of water stress was necessary to understand how groundnuts respond and what tolerance mechanisms are deployed to cope with them. To this end, we have drawn on scientific publications from journals indexed in Scopus, DOAJ, AGRIS, Web of Science, etc., to gather relevant information about the effects of drought and salinity on the physiological, biochemical and molecular responses of groundnut. The present review thus examined (a) the responses of groundnut to drought, (b) the responses of groundnut to salinity, and (c) the synthesis highlighting the similarities and differences between these two responses.

Abdenour K. 2019. Contribution à l’étude des effets de la sécheresse et du stress salin sur l’écophysiologie des espèces d’Acacia en Algérie. Doctorat thesis, Université de Batna 2.

Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA. 2017. Plant responses to salt stress: adaptive mechanisms. Agronomy 7(1), 18. https://doi.org/10.3390/agronomy7010018

Alejandro T-G, Navarro-León E, Albacete A, Blasco B, Ruiz JM. 2017. Study of phytohormone profile and oxidative metabolism as key process to identification of salinity response in tomato commercial genotypes. Journal of Plant Physiology 216, 164–173. https://doi.org/10.1016/j.jplph.2017.05.016

Alleidi I, Falalou H, Maârouhi IM, Yacoubou B, Didier ZJ. 2016. Evaluation des variétés d’arachides (Arachis hypogaea L.) pour la tolérance à la sécheresse. Actes des premières journées scientifiques nationales, Niamey, 783–796.

Alleidi I, Falalou H, Younoussa O, Yacoubou B, Didier ZJ. 2016. Caracterisation agro-morphologique des accessions d’arachide (Arachis hypogaea L.) pour la teneur en huile. European Scientific Journal 12(15), 337–351. http://dx.doi.org/10.19044/esj.2016.v12n15p337

Amari H, Hadj Chaib D, Sadek S. 2022. Isolement et identification des bactéries halophiles stimulatrices de la croissance du blé dur. Université Mouloud Mammeri.

Amouri AA. 2016. Caractérisation moléculaire et biochimique en condition de stress salin de Medicago truncatula Gaertner. Université d’Oran 1 Ahmed Ben Bella, 31000-Oran-Algérie.

Ankita A, Singh VK, Mishra A. 2020. Halotolerant PGPR Stenotrophomonas maltophilia BJ01 induces salt tolerance by modulating physiology and biochemical activities of Arachis hypogaea. Frontiers in Microbiology 11, 568289. https://doi.org/10.3389/fmicb.2020.568289

Apel K, Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55(1), 373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

Apse MP, Blumwald E. 2007. Na⁺ transport in plants. FEBS Letters 581(12), 2247–2254. https://doi.org/10.1016/j.febslet.2007.04.014

Ashraf M, Foolad MR. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59(2), 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006

Babu M, Singh D, Gothandam K. 2012. The effect of salinity on growth, hormones and mineral elements in leaf and fruit of tomato cultivar PKM1. Journal of Animal and Plant Sciences 22(1), 159–164.

Badreddine S. 2021. Evaluation de la diversité génétique, de l’efficience symbiotique et du pouvoir de promotion de croissance des plantes (PGPR) du genre Rhizobium nodulant la lentille (Lens culinaris) sous stresses abiotiques.

Banavath JN, Chakradhar T, Pandit V, Konduru S, Guduru KK, Akila CS, Podha S, Puli CO. 2018. Stress inducible overexpression of AtHDG11 leads to improved drought and salt stress tolerance in peanut (Arachis hypogaea L.). Frontiers in Chemistry 6, 34.

Barbouchi M, Lhissou R, Chokmani K, Abdelfattah R, El Harti A, Ben Aissa N. 2013. Caractérisation de la salinité des sols à l’aide de l’imagerie radar satellitaire: cas de la Tunisie et du Maroc.

Bargaz A, Ghoulam C, Faghire M, Aslan Attar H, Drevon J-J. 2011. The nodule conductance to O diffusion increases with high phosphorus content in the Phaseolus vulgaris-rhizobia symbiosis. Symbiosis 53, 157–164.

Beghin C, Lutts S. 2019. Étude de l’effet de la salinité du sol sur la valeur nutritionnelle des feuilles de Amaranthus cruentus.

Ben Ahmed C, Ben Rouina B, Sensoy S, Boukhriss M, Ben Abdullah F. 2010. Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. Journal of Agricultural and Food Chemistry 58(7), 4216–4222. https://doi.org/10.1021/jf9041479

Ben Naceur M, Naily M, Selmi M. 1999. Effet d’un déficit hydrique, survenant à différents stades de développement du blé, sur l’humidité du sol, la physiologie de la plante et sur les composantes du rendement. Medit 10, 53–60.

Ben Nja R. 2014. Effet d’un stress salin sur la teneur en polymères pariétaux dans les feuilles de luzerne (Medicago sativa cv Gabès) et sur la distribution dans les cellules de transfert des fines nervures. Limoges.

Benjelloun M, Rais C, Wahid N, El Ghadraoui L, Mhamdi MA. 2013. Evaluation de la tolérance de Myrtus communis L. au stress hydrique au stade germinatif. Bulletin de l’Institut Scientifique, Rabat, Section Sciences de la Vie 35, 19–26.

Benzahra S, Snoussi SA, Zouaoui A. 2022. Étude des caractéristiques physico-chimiques du sol sur la fixation biologique de l’azote atmosphérique chez le haricot. Agrobiologia 12(2), 3115–3121.

Berstein L, Ogata G. 1966. Effects of salinity on nodulation, nitrogen fixation, and growth of soybeans and alfalfa.

Blokhina O, Virolainen E, Fagerstedt KV. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany 91(2), 179–194. https://doi.org/10.1093/aob/mcf118

Bouassaba K, Chougui S. 2018. Effet du stress salin sur le comportement biochimique et anatomique chez deux variétés de piment (Capsicum annuum L.) à Mila/Algérie. European Scientific Journal 14(15), 159.

Boughaba HR, Mefathi S. 2018. Effets de divers facteurs biotiques et abiotiques sur la croissance et la nodulation de l’arachide (Arachis hypogaea L.) inoculé.

Boukerma L. 2017. Biotisation des plantes (Solanum lycopersicum et Arabidopsis thaliana) par les PGPRs et élicitation des réactions de défense inductible.

Chahbar S, Belkhodja M. 2016. Water deficit effects on morpho-physiological parameters in durum wheat. Journal of Fundamental and Applied Sciences 8(3), 1166–1181. https://doi.org/10.4314/jfas.v8i3.28

Chaib G, Benlaribi M, Hazmoune T. 2015. Accumulation d’osmoticums chez le blé dur (Triticum durum Desf.) sous stress hydrique. European Scientific Journal 11(24).

Chaves MM, Maroco JP, Pereira JS. 2003. Understanding plant responses to drought—from genes to the whole plant. Functional Plant Biology 30(3), 239–264.

Chen H, Jiang J-G. 2010. Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environmental Reviews 18, 309–319. https://doi.org/10.1139/A10-014

Chen T, Zeng R, Wang X, Zhang J, Ci D, Chen Y, Wang X, Wan S, Zhang L. 2019. Growth and physiological responses of peanut seedling to salt stress. International Journal of Agriculture and Biology 22(5), 1181–1186. https://doi.org/10.17957/IJAB/15.1185

Clavel D, Drame NK, Diop ND, Zuily-Fodil Y. 2005. Adaptation à la sécheresse et création variétale: le cas de l’arachide en zone sahélienne – Première partie: revue bibliographique. Oléagineux, Corps Gras, Lipides 12(3), 248–260. https://doi.org/10.1051/ocl.2005.0248

Clavel D. 2002. Biotechnologies et arachide.

Deng B, Du W, Liu C, Sun W, Tian S, Dong H. 2012. Antioxidant response to drought, cold and nutrient stress in two ploidy levels of tobacco plants: low resource requirement confers polytolerance in polyploids? Plant Growth Regulation 66, 37–47.

Diakalia S, Emmanuel C, Saïdou B, Scheik S. 2011. Effet du stress hydrique sur la croissance et la production du sésame (Sesamum indicum). Journal of Applied Biosciences 37, 2460–2467.

Douib A. 2013. Contribution à l’étude de quelques marqueurs physiologiques de tolérance au déficit hydrique chez le blé dur: taille de semences en tant que critère de sélection. Université de Annaba-Badji Mokhtar.

Dramé KN, Clavel D, Repellin A, Passaquet C, Zuily-Fodil Y. 2007. Water deficit induces variation in expression of stress-responsive genes in two peanut (Arachis hypogaea L.) cultivars with different tolerance to drought. Plant Physiology and Biochemistry 45(3–4), 236–243. https://doi.org/10.1016/j.plaphy.2007.02.002

Duarte B, Santos D, Marques J, Caçador I. 2013. Ecophysiological adaptations of two halophytes to salt stress: photosynthesis, PS II photochemistry and anti-oxidant feedback–implications for resilience in climate change. Plant Physiology and Biochemistry 67, 178–188. https://doi.org/10.1016/j.plaphy.2013.03.004

El Fakhri M, Mahboub S, Benchekroun M, Nsarellah N. 2010. Effet du stress hydrique sur les caractéristiques d’enracinement du blé dur (Triticum durum Desf). Nature and Technology (3), 6.

Farissi M, Aziz F, Bouizgaren A, Ghoulam C. 2014. La symbiose Légumineuses–rhizobia sous conditions de salinité: aspect agro-physiologique et biochimique de la tolérance. International Journal of Innovative Science and Research 11, 96–104.

Farooq M, Hussain M, Wakeel A, Siddique KH. 2015. Salt stress in maize: effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development 35, 461–481.

Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SM. 2009. Plant drought stress: effects, mechanisms and management. In: Sustainable Agriculture, Springer, 153–188.

Foncéka D. 2010. Elargissement de la base génétique de l’arachide cultivée (Arachis hypogaea): applications pour la construction de populations, l’identification de QTL et l’amélioration de l’espèce cultivée. Montpellier SupAgro.

Forni C, Duca D, Glick BR. 2017. Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant and Soil 410, 335–356.

Foyer CH, Noctor G. 2011. Ascorbate and glutathione: the heart of the redox hub. Plant Physiology 155(1), 2–18.

Furlan AL, Bianucci E, Castro S, Dietz K-J. 2017. Metabolic features involved in drought stress tolerance mechanisms in peanut nodules and their contribution to biological nitrogen fixation. Plant Science 263, 12–22. https://doi.org/10.1016/j.plantsci.2017.06.009

Gaufichon L, Prioul J-L, Bachelier B. 2010. Quelles sont les perspectives d’amélioration génétique de plantes cultivées tolérantes à la sécheresse. Rapport FARM.

Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48(12), 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

Gimeno-Gilles C. 2009. Étude cellulaire et moléculaire de la germination chez Medicago truncatula. Université d’Angers.

Guo B, Xu G, Cao Y, Holbrook C, Lynch R. 2006. Identification and characterization of phospholipase D and its association with drought susceptibilities in peanut (Arachis hypogaea). Planta 223, 512–520.

Halima F, Racha H. 2022. Influence de quelques pratiques agricoles sur la diversité de la macrofaune du sol. University Center of Abdalhafid Boussouf-Mila.

Hamidou F, Dicko MH, Zombre G, Traoré AS, Guinko S. 2005. Réponse adaptative de deux variétés de niébé à un stress hydrique. Cahiers Agricultures 14(6), 561–567.

Hammam A, Mohamed E. 2020. Mapping soil salinity in the East Nile Delta using several methodological approaches of salinity assessment. The Egyptian Journal of Remote Sensing and Space Science 23(2), 125–131. https://doi.org/10.1016/j.ejrs.2018.11.002

Hanana M, Hamrouni L, Cagnac O, Blumwald E. 2011. Mécanismes et stratégies cellulaires de tolérance à la salinité (NaCl) chez les plantes. Environmental Reviews 19, 121–140. https://doi.org/10.1139/a11-003

Havaux M, Eymery F, Porfirova S, Rey P, Dörmann P. 2005. Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. The Plant Cell 17(12), 3451-3469. https://doi.org/10.1105/tpc.105.037036

Hungria M, Vargas MA. 2000. Environmental factors affecting N₂ fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Research 65(2–3), 151–164. https://doi.org/10.1016/S0378-4290(99)00084-2

Imane B, Fatima Zahra B. 2022. Diversité phénotypique de quelques isolats rhizobiens associés à la culture d’arachide (Arachis hypogaea L.) dans la région de Ghardaïa.

Imran QM, Falak N, Hussain A, Mun B-G, Yun B-W. 2021. Abiotic stress in plants; stress perception to molecular response and role of biotechnological tools in stress resistance. Agronomy 11(8), 1579. https://doi.org/10.3390/agronomy11081579

Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, YamaguchiShinozaki K, Shinozaki K. 2001. Regulation of drought tolerance by gene manipulation of 9‐cis‐epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. The Plant Journal 27(4), 325–333. https://doi.org/10.1046/j.1365-313x.2001.01096.x

Jajoo A. 2012. Changes in photosystem II in response to salt stress. In: Ecophysiology and responses of plants under salt stress. Springer, 149–168.

Jallouli SS. 2019. Étude de l’homéostasie des sucres en réponse à une forte salinité chez Arabidopsis thaliana: impact sur l’anatomie des tissus vasculaires dans la hampe florale et rôle dans la tolérance. Université Paris Saclay (COmUE); Université du Centre (Sousse, Tunisie).

Johari MP. 2010. Effect of soil water stress on yield and proline content of four wheat lines. African Journal of Biotechnology 9(1).

Josephine D, Memti NM, Sokoye FG. 2020. Impact du stress hydrique sur la production d’une variété de sorgho (Sorghum bicolor [L], le S35) au Tchad.

Kabore Z, Kihindo AP, Ouedraogo RF, Roméo H, Bazie, Dianou D, Zombre G. 2019. Physiological and biochemical responses of soybean (Glycine max (L.) Merrill) inoculated with Bradyrhizobium japonicum to water deficiency. International Journal of Progressive Sciences and Technologies 13, 54–66.

Khaled K, Amdjed M. 2023. Étude de quelques effets du stress hydrique et salin sur la morphologie, la physiologie et la biochimie du blé dur (Triticum durum Desf.).

Kim T-H, Lee B-R, Jung W-J, Kim K-Y, Avice J-C, Ourry A. 2004. De novo protein synthesis in relation to ammonia and proline accumulation in water-stressed white clover. Functional Plant Biology 31(8), 847–855. https://doi.org/10.1071/FP04059

Kocsy G, Laurie R, Szalai G, Szilágyi V, SimonSarkadi L, Galiba G, De Ronde JA. 2005. Genetic manipulation of proline levels affects antioxidants in soybean subjected to simultaneous drought and heat stresses. Physiologia Plantarum 124(2), 227–235. https://doi.org/10.1111/j.1399-3054.2005.00504.x

Kollist H, Nuhkat M, Roelfsema MRG. 2014. Closing gaps: linking elements that control stomatal movement. New Phytologist 203(1), 44–62. https://doi.org/10.1111/nph.12832

Konate M, Wilkinson MJ, Mayne BT, Pederson SM, Scott ES, Berger B, Rodriguez Lopez CM. 2018. Salt stress induces non-CG methylation in coding regions of barley seedlings (Hordeum vulgare). Epigenomes 2(2), 12. https://doi.org/10.3390/epigenomes2020012

L’taief B, Sifi B, Zaman-Allah M, Hajji M, Lachaâl M. 2009. Effets de la fertilisation azotée, de l’inoculation par Rhizobium sp. et du régime des pluies sur la production de la biomasse et la teneur en azote du pois chiche. BASE.

Lamri D, Wided A, Ilhem H. 2020. Effet du traitement salin sur la germination, la croissance et sur la nodulation de la lentille (Lens culinaris Medik).

Lawlor DW, Cornic G. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment 25(2), 275–294. https://doi.org/10.1046/j.0016-8025.2001.00814.x

Lazali M. 2009. Étude de la symbiose à rhizobium chez l’arachide (Arachis hypogaea L.) cultivée sous contrainte hydrique- aspects morpho-physiologiques et agronomiques.

Li J, Liu L-N, Meng Q, Fan H, Sui N. 2020. The roles of chloroplast membrane lipids in abiotic stress responses. Plant Signaling and Behavior 15(11), 1807152. https://doi.org/10.1080/15592324.2020.1807152

Li S, He X, Gao Y, Zhou C, Chiang VL, Li W. 2021. Histone acetylation changes in plant response to drought stress. Genes 12(9), 1409. https://doi.org/10.3390/genes12091409

Li X, Lu J, Liu S, Liu X, Lin Y, Li L. 2014. Identification of rapidly induced genes in the response of peanut (Arachis hypogaea) to water deficit and abscisic acid. BMC Biotechnology 14, 1–9.

Liu Y, Yu L, Qu Y, Chen J, Liu X, Hong H, Liu Z, Chang R, Gilliham M, Qiu L. 2016. GmSALT3, which confers improved soybean salt tolerance in the field, increases leaf Cl⁻ exclusion prior to Na⁺ exclusion but does not improve early vigor under salinity. Frontiers in Plant Science 7, 1485. https://doi.org/10.3389/fpls.2016.01485

Long H, Zheng Z, Zhang Y, Xing P, Wan X, Zheng Y, Li L. 2019. An abscisic acid (ABA) homeostasis regulated by its production, catabolism and transport in peanut leaves in response to drought stress. PLOS ONE 14(6), e0213963. https://doi.org/10.1371/journal.pone.0213963

López M, Herrera-Cervera JA, Iribarne C, Tejera NA, Lluch C. 2008. Growth and nitrogen fixation in Lotus japonicus and Medicago truncatula under NaCl stress: nodule carbon metabolism. Journal of Plant Physiology 165(6), 641–650.https://doi.org/10.1016/j.jplph.2007.05.009

Lutts S, Lefevre I, Delpérée C, Kivits S, Dechamps C, Robledo A, Correal E. 2004. Heavy metal accumulation by the halophyte species Mediterranean saltbush. Journal of Environmental Quality 33(4), 1271–1279. https://doi.org/10.2134/jeq2004.1271

Majumder AL, Sengupta S, Goswami L. 2010. Osmolyte regulation in abiotic stress. In: Abiotic Stress Adaptation in Plants: Physiological, Molecular and Genomic Foundation, 349–370.

Mao F, Leung W-Y, Xin X. 2007. Characterization of EvaGreen and the implication of its physicochemical properties for qPCR applications. BMC Biotechnology 7, 1–16.

Marino D, González EM, Arrese-Igor C. 2006. Drought effects on carbon and nitrogen metabolism of pea nodules can be mimicked by paraquat: evidence for the occurrence of two regulation pathways under oxidative stresses. Journal of Experimental Botany 57(3), 665–673. https://doi.org/10.1093/jxb/erj056

Morot-Gaudry J-F, Prat R. 2009. Biologie végétale. Nutrition et métabolisme. Édition Dunod.

Muchate NS, Nikalje GC, Rajurkar NS, Suprasanna P, Nikam TD. 2016. Plant salt stress: adaptive responses, tolerance mechanism and bioengineering for salt tolerance. The Botanical Review 82, 371–406.

Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59, 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

Mwanamwenge J, Loss S, Siddique K, Cocks P. 1999. Effect of water stress during floral initiation, flowering and podding on the growth and yield of faba bean (Vicia faba L.). European Journal of Agronomy 11(1), 1–11. https://doi.org/10.1016/S1161-0301(99)00003-9

Nguyen CT. 2012. Identification et caractérisation d’un canal chlorure, AtCLCg, impliqué dans la réponse au stress salin chez Arabidopsis thaliana. Université Paris Sud–Paris XI.

Ouali AK. 2011. Étude de comportement de quelques populations d’arachide (Arachis hypogaea L.) vis-à-vis du stress hydrique.

Petitpas M. 2023. Mécanismes épigénétiques impliqués dans la réponse d’Arabidopsis thaliana à l’infection par Plasmodiophora brassicae sous différentes conditions abiotiques. Agrocampus Ouest.

Poormohammad Kiani S. 2007. Analyse génétique des réponses physiologiques du tournesol (Helianthus annuus L.) soumis à la sécheresse.

Prakash M, Arjuna Samy, Ramasamy A. 2023. Légumineuses: physiologie et biologie moléculaire de la tolérance au stress abiotique.

Prévost V, David K, Hindié M, Landernau S, Mokni M. 2024. Les diffusions de fréquences sonores conçues pour cibler les déshydrines induisent la tolérance au stress hydrique des semis de Pisum sativum.

Qin H, Gu Q, Zhang J, Sun L, Kuppu S, Zhang Y, Burow M, Payton P, Blumwald E, Zhang H. 2011. Regulated expression of an isopentenyltransferase gene (IPT) in peanut significantly improves drought tolerance and increases yield under field conditions. Plant and Cell Physiology 52(11), 1904–1914. https://doi.org/10.1093/pcp/pcr125

Rahma LZ. 2020. Evaluation du comportement physiologiques, et potentialités biochimiques et phytochimiques adaptatives du (Phaseolus vulgaris L.) soumise au stress salin: cas des cultivars SIDI FERREDJ et DJADIDA.

Rai A. 2017. Effet du stress salin sur les bactéries du sol: rôle d’extraits dérivés de Enteromorpha intestinalis, Ulva lactuca et Opuntia ficus-indica sur la relation bactérie-plante sous stress salin. Université Ferhat Abbas Sétif.

Rao KMB, Raghavendra A, Reddy K. 2006. Physiology and molecular biology of stress tolerance. Springer.

Rejeb KB. 2015. Involvement of reactive oxygen species (ROS) in the regulation of antioxidant capacity and proline metabolism in Arabidopsis thaliana under water stress. Université Pierre et Marie Curie-Paris VI; Université de Tunis El-Manar.

Rima M, Aymen B. 2022. Étude du comportement de quelques variétés de colza (Brassica napus L.) à l’étage bioclimatique semi-aride (El Hammadia–Bordj Bou Arréridj).

Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, Obando M, Rivera D, Bonilla R. 2012. Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Applied Soil Ecology 61, 264–272. https://doi.org/10.1016/j.apsoil.2012.01.006

Roy S, Negrao S, Tester M. 2014. Salt resistant crop plants. Plant Cell Physiology 33, 1247–1250. https://doi.org/10.1016/j.copbio.2013.12.004

Ruan C-J, da Silva JAT, Mopper S, Qin P, Lutts S. 2010. Halophyte improvement for a salinized world. Critical Reviews in Plant Sciences 29(6), 329–359. https://doi.org/10.1080/07352689.2010.524517

Salwa A, Hammad KA, Tantawy M. 2010. Studies on salinity tolerance of two peanut cultivars in relation to growth, leaf water content, some chemical aspects and yield. Journal of Applied Sciences Research 6(10), 1517–1526.

Sarkar T, Thankappan R, Kumar A, Mishra GP, Dobaria JR. 2016. Stress inducible expression of AtDREB1A transcription factor in transgenic peanut (Arachis hypogaea L.) conferred tolerance to soil-moisture deficit stress. Frontiers in Plant Science 7, 935. https://doi.org/10.3389/fpls.2016.00935

Shahba Z, Baghizadeh A, Yousefi M, Ohadi M. 2014. Effect of salicylic acid on oxidative stress caused by NaCl salinity in Lycopersicum esculentum Mill. Research Journal of Environmental Sciences 8(1), 49.

Silva-Ortega CO, Ochoa-Alfaro AE, Reyes-Agüero JA, Aguado-Santacruz GA, Jiménez-Bremont JF. 2008. Salt stress increases the expression of p5cs gene and induces proline accumulation in cactus pear. Plant Physiology and Biochemistry 46(1), 82–92. https://doi.org/10.1016/j.plaphy.2007.10.011

Singh A. 2022. Soil salinity: A global threat to sustainable development. Soil Use and Management 38(1), 39–67. https://doi.org/10.1111/sum.12772

Slim N, Sifi B, Triki S. 2008. Criblage de variétés de pois chiche (Cicer arietinum L.) pour la résistance au stress hydrique. Revue des Régions Arides (21), 734–744.

Smith S, Smet D. 2012. Root system architecture: insights from Arabidopsis and cereal crops. Philosophical Transactions of the Royal Society B: Biological Sciences 367, 1441–1452. https://doi.org/10.1098/rstb.2011.0234

Souana K. 2021. Étude de l’interaction «acide salicylique–salinité» sur la réponse physiologique et moléculaire de la fève (Vicia faba L.). Université Ibn Khaldoun-Tiaret.

Stefanov M, Yotsova E, Rashkov G, Ivanova K, Markovska Y, Apostolova EL. 2016. Effects of salinity on the photosynthetic apparatus of two Paulownia lines. Plant Physiology and Biochemistry 101, 54–59. https://doi.org/10.1016/j.plaphy.2016.01.017

Streeter J. 2003. Effects of drought on nitrogen fixation in soybean root nodules. Plant, Cell and Environment 26(8), 1199–1204. https://doi.org/10.1046/j.1365-3040.2003.01041.x

Tam NC. 2012. Identification et caractérisation d’un canal chlorure, AtCLCg, impliqué dans la réponse au stress salin chez Arabidopsis thaliana. Paris 11.

Tellah S. 2016. Étude des mécanismes agrophysiologiques, morphologiques et moléculaires impliqués dans la tolérance au stress hydrique chez quelques populations locales d’arachide (Arachis hypogaea L.).

Tian F, Hou M, Qiu Y, Zhang T, Yuan Y. 2020. Salinity stress effects on transpiration and plant growth under different salinity soil levels based on thermal infrared remote (TIR) technique. Geoderma 357, 113961. https://doi.org/10.1016/j.geoderma.2019.113961

Tshiabukole JPK. 2018. Évaluation de la sensibilité aux stress hydriques du maïs (Zea mays L.) cultivé dans la savane du Sud-Ouest de la RD Congo, cas de Mvuazi. Université Pédagogique Nationale Kinshasa (République démocratique du Congo).

Ullah H, Scappini EL, Moon AF, Williams LV, Armstrong DL, Pedersen LC. 2009. Structure of a signal transduction regulator, RACK1, from Arabidopsis thaliana. Protein Science 17(10), 1771–1780. https://doi.org/10.1110/ps.035121.108

Upchurch RG. 2008. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnology Letters 30, 967–977.

Vadez V, Krishnamurthy L, Kashiwagi J, Kholova J, Devi J, Sharma K, Bhatnagar-Mathur P, Hoisington D, Hash C, Bidinger F. 2007. Exploiting the functionality of root systems for dry, saline, and nutrient deficient environments in a changing climate. Journal of SAT Agricultural Research 4(1), 1–61.

Wafaa D. 2019. Thermodynamique des transports membranaires.

Wan X-R, Li L. 2006. Regulation of ABA level and water-stress tolerance of Arabidopsis by ectopic expression of a peanut 9-cis-epoxycarotenoid dioxygenase gene. Biochemical and Biophysical Research Communications 347(4), 1030–1038. https://doi.org/10.1016/j.bbrc.2006.07.026

Wang W, Vinocur B, Altman A. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218, 1–14.

Xiao-li W, Bao W-K. 2012. Statistical analysis of leaf water use efficiency and physiology traits of winter wheat under drought condition. Journal of Integrative Agriculture 11(1), 82–89. https://doi.org/10.1016/S1671-2927(12)60785-8

Yaiche F. 2017. Stratégies de défense observées chez le blé comme réponse à l’induction d’un stress oxydatif. Thèse de doctorat, Université Badji Mokhtar, Annaba. 199 p

Yang X, Lu M, Wang Y, Wang Y, Liu Z, Chen S. 2021. Response mechanism of plants to drought stress. Horticulturae 7(3), 50. https://doi.org/10.3390/horticulturae7030050

Yokota A, Takahara K, Akashi K. 2006. Water stress. In: Physiology and Molecular Biology of Stress Tolerance in Plants, 15–39.

Zaidi C, Fetnaci L, Ferrag I. 2020. Approche bibliographique de l’effet du stress hydrique sur la réponse oxydative chez le blé dur (Triticum durum Desf.).

Zhang F, Yang J, Zhang N, Wu J, Si H. 2022. Roles of microRNAs in abiotic stress response and characteristics regulation of plant. Frontiers in Plant Science 13, 919243. https://doi.org/10.3389/fpls.2022.919243

Zhang H, Yu Y, Wang S, Yang J, Ai X, Zhang N, Zhao X, Liu X, Zhong C, Yu H. 2023. Genome-wide characterization of phospholipase D family genes in allotetraploid peanut and its diploid progenitors revealed their crucial roles in growth and abiotic stress responses. Frontiers in Plant Science 14, 1102200. https://doi.org/10.3389/fpls.2023.1102200

Zineb D, Djerad K, Kernaou G. 2023. Effet de la salinité et le déficit hydrique sur la croissance et certains métabolites de la fève (Vicia faba L.). Université Ibn Khaldoun.

Related Articles

Introduction of heavy metals contamination in the water: A review on source, toxicity and remediation methods

Khushaboo Soni, Preeti Maurya, Sanjay Singh, Int. J. Biosci. 27(1), 405-423, July 2025.

Effects of pyroligneous acid of eggplant under different storage conditions

Amelita G. Alkuino, Int. J. Biosci. 27(1), 362-374, July 2025.

Antibacterial efficiency of panchagavya against pathogenic bacteria isolated from Oreochromis mossambicus

R. Keerthiga, M. Kannahi, Int. J. Biosci. 27(1), 355-361, July 2025.

Study on physico-morphological characteristics of Betel vine cv. Khasia pan genotypes grown in northeastern hilly region of Bangladesh

J. C. Sarker, F. Ahmed, M. H. M. B. Bhuyan, S. Debnath, S. M. L. Rahman, Int. J. Biosci. 27(1), 343-354, July 2025.

Plant growth promoting and biocontrol activity of Rhizobium meliloti against plant pathogens

R. Nithyatharani, S. Subashini, M. Vinoth, R. Krishnan, Int. J. Biosci. 27(1), 336-342, July 2025.

Effect of rhizobial inoculant in combination with vermicompost and molybdenum on soybean in pot condition

Sharmin Ara Jannat, Md. Azizul Haque, Saiyera Chowdhury, Alif Hossain, Int. J. Biosci. 27(1), 328-335, July 2025.

Ectoparasite species diversity and prevalence in pigs (Sus scrofa domesticus) within delta central senatorial district, Delta State, Nigeria

Ede E. Lemy, Awharitoma O. Agnes, Orhewere D. A. Regina, Omoregie O. Anthony, Owhororo Ejiro, Int. J. Biosci. 27(1), 320-327, July 2025.