Flammability of tropical grasses: Towards a functional ecology of fire in savannas
Paper Details
Flammability of tropical grasses: Towards a functional ecology of fire in savannas
Abstract
Fire is a key ecological process in tropical savannas, yet species-specific contributions to fuel flammability remain poorly understood in West Africa. Here, we present the first experimental assessment of flammability traits in the Lamto humid savanna (Côte d’Ivoire), focusing on five dominant perennial grasses, litter, and realistic mixtures. We quantified four plant flammability traits (ignitibility, combustibility, sustainability, consumability) and six fire behavior parameters (flame height, fuel consumption, and maximum temperatures at three heights). Our results show that ignitibility varied strongly among species, with Hyparrhenia diplandra and Loudetia simplex igniting more rapidly than others. In contrast, combustibility, sustainability, and consumability were relatively consistent across fuel types. Fire behaviour also varied: complete combustion occurred in some mixtures, whereas Andropogon schirensis and litter-containing mixtures left significant unburned material, likely due to lower fuel porosity. Importantly, mixture flammability was non-additive: mixtures did not reflect the sum of their components but instead approximated the average flammability of constituent species. Principal Component Analysis and hierarchical clustering identified three functional flammability groups: (i) highly flammable fuels (Imperata cylindrica, L. simplex, litter), (ii) moderately flammable fuels (A. schirensis, H. diplandra, mixture 3), and (iii) poorly flammable fuels (A. canaliculatus and mixtures 1, 2, 4). These findings highlight the non-additive and species-specific nature of savanna fuel flammability, with direct implications for fire intensity, severity, and management. This trait-based approach provides a foundation for predicting fire behavior in West African savannas and for integrating species-level flammability into conservation-oriented fire management.
Abbadie L, Gignoux J, Le Roux X, Lepage M. 2006. Lamto : structure, functioning and dynamics of a savanna ecosystem. New York: Springer. http://www.documentation.ird.fr/hor/fdi:010039255
Alam AMD, Wyse SV, Buckley HL, Perry GLW, Sullivan JJ, Mason NWH, Buxton R, Richardson SJ, Curran TJ. 2020. Shoot flammability is decoupled from leaf flammability, but controlled by leaf functional traits. Journal of Ecology 108(2), 641–653. https://doi.org/10.1111/1365-2745.13289
Alessio GA, Peñuelas J, De Lillis M, Llusià J. 2008. Implications of foliar terpene content and hydration on leaf flammability of Quercus ilex and Pinus halepensis. Plant Biology 10(1), 123–128. https://doi.org/10.1111/j.1438-8677.2007.00011.x
Allaerts W. 2023. The unified neutral theory of biodiversity and biogeography revisited. Advances in Earth and Environmental Science 4(2), 1–10. https://doi.org/10.47485/2766-2624.1032
Anderson HE. 1970. Forest fuel ignitibility. Fire Technology 6(4), 312–319. https://doi.org/10.1007/BF02588932
Archer SR, Andersen EM, Predick KI, Schwinning S, Steidl RJ, Woods SR. 2017. Woody plant encroachment: causes and consequences. In: Briske DD, editor. Rangeland systems: processes, management and challenges. Cham: Springer International Publishing., p. 25–84. https://doi.org/10.1007/978-3-319-46709-2_2
Beckage B, Platt WJ, Gross LJ. 2009. Vegetation, fire, and feedbacks: a disturbance‐mediated model of savannas. The American Naturalist 174(6), 805–818. https://doi.org/10.1086/648458
Biggs CR, Yeager LA, Bolser DG, Bonsell C, Dichiera AM, Hou Z, Keyser SR, Khursigara AJ, Lu K, Muth AF, Negrete B, Erisman BE. 2020. Does functional redundancy affect ecological stability and resilience? A review and meta‐analysis. Ecosphere 11(7), e03184. https://doi.org/10.1002/ecs2.3184
Bond W, Keeley J. 2005. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends in Ecology and Evolution 20(7), 387–394. https://doi.org/10.1016/j.tree.2005.04.025
Bowman DMJS, French BJ, Prior LD. 2014. Have plants evolved to self-immolate? Front Plant Sci 5, 590. https://doi.org/10.3389/fpls.2014.00590
Burger N, Bond WJ. 2015. Flammability traits of Cape shrubland species with different post-fire recruitment strategies. South African Journal of Botany 101, 40–48. https://doi.org/10.1016/j.sajb.2015.05.026
Byram GM. 1959. Combustion of forest fuels. In: Davi KP, editor. Forest fire: control and use. New York, NY, USA: McGraw-Hill. p. 61–89
Calitz W, Potts AJ, Cowling RM. 2015. Investigating species-level flammability across five biomes in the Eastern Cape, South Africa. South African Journal of Botany 101, 32–39. https://doi.org/10.1016/j.sajb.2015.07.005
Cardoso AW, Oliveras I, Abernethy KA, Jeffery KJ, Lehmann D, Edzang Ndong J, McGregor I, Belcher CM, Bond WJ, Malhi YS. 2018. Grass species flammability, not biomass, drives changes in fire behavior at tropical forest-savanna transitions. Frontiers in Forests and Global Change 1(6), 1–14. https://www.frontiersin.org/articles/10.3389/ffgc.2018.00006
Case MF, Staver AC. 2017. Fire prevents woody encroachment only at higher-than-historical frequencies in a South African savanna. Journal of Applied Ecology 54(3), 955–962. https://doi.org/10.1111/1365-2664.12805
Clarke PJ, Prior LD, French BJ, Vincent B, Knox KJE, Bowman DMJS. 2014. Using a rainforest-flame forest mosaic to test the hypothesis that leaf and litter fuel flammability is under natural selection. Oecologia 176(4), 1123–1133. https://doi.org/10.1007/s00442-014-3071-y
Cornwell WK, Elvira A, van Kempen L, van Logtestijn RSP, Aptroot A, Cornelissen JHC. 2015. Flammability across the gymnosperm phylogeny: the importance of litter particle size. New Phytologist 206(2), 672–681. https://doi.org/10.1111/nph.13317
Cui X, Paterson AM, Wyse SV, Alam MA, Maurin KJL, Pieper R, Padullés Cubino J, O’Connell DM, Donkers D, Bréda J, Buckley HL, Perry GLW, Curran TJ. 2020. Shoot flammability of vascular plants is phylogenetically conserved and related to habitat fire-proneness and growth form. Nat Plants 6(4), 355–359. https://doi.org/10.1038/s41477-020-0635-1
Davies GM, Legg CJ. 2011. Fuel moisture thresholds in the flammability of Calluna vulgaris. Fire Technology 47(2), 421–436. https://doi.org/10.1007/s10694-010-0162-0
Dayamba SD, Savadogo P, Zida D, Sawadogo L, Tiveau D, Oden PC. 2010. Fire temperature and residence time during dry season burning in a Sudanian savanna-woodland of West Africa with implication for seed germination. Journal of Forestry Research 21(4), 445–450. https://doi.org/10.1007/s11676-010-0095-y
Fischer FM, De Bello F. 2023. On the uniqueness of functional redundancy. npj biodiversity 2(1), 23. https://doi.org/10.1038/s44185-023-00029-z
Gill AM, Zylstra P. 2005. Flammability of Australian forests. Australian Forestry 68(2), 87–93. https://doi.org/10.1080/00049158.2005.10674951
Gross N, Suding KN, Lavorel S, Roumet C. 2007. Complementarity as a mechanism of coexistence between functional groups of grasses. Journal of Ecology 95(6), 1296–1305. https://doi.org/10.1111/j.1365-2745.2007.01303.x
Guerrero F, Carmona C, Hernández C, Toledo M, Arriagada A, Espinoza L, Bergmann J, Taborga L, Yañez K, Carrasco Y, Muñoz AA. 2022. Drivers of flammability of Eucalyptus globulus labill leaves: terpenes, essential oils, and moisture content. Forests 13(6), 908. https://doi.org/10.3390/f13060908
Guerrero F, Hernández C, Toledo M, Espinoza L, Carrasco Y, Arriagada A, Muñoz A, Taborga L, Bergmann J, Carmona C. 2021. Leaf thermal and chemical properties as natural drivers of plant flammability of native and exotic tree species of the Valparaíso Region, Chile. International Journal of Environmental Research and Public Health 18(13), 7191. https://doi.org/10.3390/ijerph18137191
Kelsey RG, Westlind DJ. 2017. Physiological stress and ethanol accumulation in tree stems and woody tissues at sublethal temperatures from fire. BioScience 67(5), 443-451. https://doi.org/10.1093/biosci/bix037
Koffi KF, N’Dri AB, Konaré S, Srikanthasamy T, Lata J-C, Konaté S, Konan M, Barot S. 2022. Demography of the dominant perennial grass species of a humid African savanna. Acta Oecologica 114, 103816. https://doi.org/10.1016/j.actao.2022.103816
Koffi KF, N’Dri AB, Lata J-C, Konaté S, Srikanthasamy T, Konaré S, Konan M, Barot S. 2019. Effect of fire regimes on the demographic parameters of the perennial tussock grasses of a humid savanna. Journal of Vegetation Science 30(5), 950-962. https://doi.org/10.1111/jvs.12788
Koffi KF. 2019. Impact du feu sur la démographie des Graminées de savane. Ph.D. thesis, Sorbonne Université – Université Nangui Abrogoua, France-Côte d’Ivoire, p. 1-214. http://www.documentation.ird.fr/hor/fdi:010075970
Kpangba KP, N’Dri AB, Bakayoko A. 2022. Capacité de germination des graines et résistance aux feux des plantules des principales espèces ligneuses en savane guinéenne (Afrique de l’Ouest). REB-PASRES 7(1), 61-73. www://rebpasres.org
Kraaij T, Msweli ST, Potts AJ. 2022. Fuel trait effects on flammability of native and invasive alien shrubs in coastal fynbos and thicket (Cape Floristic Region). PeerJ 10, e13765. https://doi.org/10.7717/peerj.13765
Kraaij T, Msweli ST, Potts AJ. 2024. Flammability of native and invasive alien plants common to the Cape Floristic Region and beyond: Fire risk in the wildland–urban interface. Trees, Forests and People 15, 100513. https://doi.org/10.1016/j.tfp.2024.100513
Lowe S, Browne M, Boudjelas M, De Poorter M. 2007. 100 of the world’s worst invasive alien species: A selection from the Global Invasive Species Database. IUCN. New Zealand: Hollands Printing Ltd. https://portals.iucn.org/library/node/8565
Menaut J-C, Abbadie L. 2006. Vegetation. In: Abbadie L, Gignoux J, Le Roux X, Lepage M, editors. Lamto. Vol. 179. Springer, New York. p. 63-74. https://doi.org/10.1007/0-387-33857-8_5
Midgley JJ. 2013. Flammability is not selected for, it emerges. Australian Journal of Botany. 61(2), 102-106. https://doi.org/10.1071/BT12289
N’Dri AB, Kpré AJ-N, Koffi KP, Soro DT, Koffi VK, Koffi KF, Kouamé YAG, Koffi AB, Konan NL. 2021. Experimental study of fire behavior in annually burned humid savanna of West Africa in the context of bush encroachment. In: Leal Filho W, Pretorius R, De Sousa LO, editors. Sustainable Development in Africa. Leal Filho, W., Pretorius, R., de Sousa, L.O. Cham, Switzerland: Springer, p. 491-505. https://doi.org/10.1007/978-3-030-74693-3
Osborne CP, Salomaa A, Kluyver TA, Visser V, Kellogg EA, Morrone O, Vorontsova MS, Clayton WD, Simpson DA. 2014. A global database of C4 photosynthesis in grasses. New Phytologist 204(3), 441-446. https://doi.org/10.1111/nph.12942
Pausas JG, Alessio GA, Moreira B, Corcobado G. 2012. Fire enhance flammability in Ulex parviflorus. New Phytologist 193,18-23.
Pausas JG, Keeley JE, Schwilk DW. 2017. Flammability as an ecological and evolutionary driver. Journal of Ecology 105(2), 289-297. https://doi.org/10.1111/1365-2745.12691
Plucinski MP, Anderson WR. 2008. Laboratory determination of factors influencing successful point ignition in the litter layer of shrubland vegetation. International Journal of Wildland Fire 17(5), 628-637. https://doi.org/10.1071/WF07046
Prior LD, Murphy BP, Williamson GJ, Cochrane MA, Jolly WM, Bowman DMJS. 2017. Does inherent flammability of grass and litter fuels contribute to continental patterns of landscape fire activity? Journal of Biogeography 44(6), 1225-1238. https://doi.org/10.1111/jbi.12889
R Core Team. 2021. R: A language and environment for statistical computing [Internet]. https://www.R-project.org/
Santana VM, Marrs RH. 2014. Flammability properties of British heathland and moorland vegetation: Models for predicting fire ignition. Journal of Environmental Management 139, 88-96. https://doi.org/10.1016/j.jenvman.2014.02.027
Santoni PA, Bartoli P, Simeoni A, Torero JL. 2014. Bulk and particle properties of pine needle fuel beds- influence on combustion. International Journal of Wildland Fire 23(8), 1076-1086. https://doi.org/10.1071/WF13079
Saura-Mas S, Paula S, Pausas JG, Lloret F. 2010. Fuel loading and flammability in the Mediterranean Basin woody species with different post-fire regenerative strategies. International Journal of Wildland Fire 19(6), 783-794. https://doi.org/10.1071/WF09066
Schwilk DW, Ackerly DD. 2001. Flammability and serotiny as strategies: correlated evolution in pines. Oikos 94(2), 326-336. https://doi.org/10.1034/j.1600-0706.2001.940213.x
Simpson KJ, Ripley BS, Christin P-A, Belcher CM, Lehmann CER, Thomas GH, Osborne CP. 2016. Determinants of flammability in savanna grass species. Journal of Ecology 104(1), 138-148. https://doi.org/10.1111/1365-2745.12503
Tiemoko DT, Yoroba F, Diawara A, Kouadio K, Kouassi BK, Yapo ALM. 2020. Understanding the local carbon fluxes variations and their relationship to climate conditions in a sub-humid savannah-ecosystem during 2008-2015: case of Lamto in Cote d’Ivoire. Atmospheric and Climate Sciences 10(2), 186-205. https://doi.org/10.4236/acs.2020.102010
White RH, Zipperer WC. 2010. Testing and classification of individual plants for fire behaviour: plant selection for the wildland- Urban interface. International Journal of Wildland Fire 19(2), 213-227. https://doi.org/10.1071/WF07128
Zhang W, Liu G. 2015. Coevolution: A synergy in biology and ecology. Selforganizology. 2(2), 35-38.
Kouamé Fulgence Koffi, Yao Anicet Gervais Kouamé, Tionhonkélé Drissa Soro, Koffi Prosper Kpangba, 2025. Flammability of tropical grasses: Towards a functional ecology of fire in savannas. Int. J. Biosci., 27(4), 57-68.
Copyright © 2025 by the Authors. This article is an open access article and distributed under the terms and conditions of the Creative Commons Attribution 4.0 (CC BY 4.0) license.


