Flammability of tropical grasses: Towards a functional ecology of fire in savannas

Paper Details

Research Paper 10/10/2025
Views (3)
current_issue_feature_image
publication_file

Flammability of tropical grasses: Towards a functional ecology of fire in savannas

Kouamé Fulgence Koffi, Yao Anicet Gervais Kouamé, Tionhonkélé Drissa Soro, Koffi Prosper Kpangba
Int. J. Biosci. 27(4), 57-68, October 2025.
Copyright Statement: Copyright 2025; The Author(s).
License: CC BY-NC 4.0

Abstract

Fire is a key ecological process in tropical savannas, yet species-specific contributions to fuel flammability remain poorly understood in West Africa. Here, we present the first experimental assessment of flammability traits in the Lamto humid savanna (Côte d’Ivoire), focusing on five dominant perennial grasses, litter, and realistic mixtures. We quantified four plant flammability traits (ignitibility, combustibility, sustainability, consumability) and six fire behavior parameters (flame height, fuel consumption, and maximum temperatures at three heights). Our results show that ignitibility varied strongly among species, with Hyparrhenia diplandra and Loudetia simplex igniting more rapidly than others. In contrast, combustibility, sustainability, and consumability were relatively consistent across fuel types. Fire behaviour also varied: complete combustion occurred in some mixtures, whereas Andropogon schirensis and litter-containing mixtures left significant unburned material, likely due to lower fuel porosity. Importantly, mixture flammability was non-additive: mixtures did not reflect the sum of their components but instead approximated the average flammability of constituent species. Principal Component Analysis and hierarchical clustering identified three functional flammability groups: (i) highly flammable fuels (Imperata cylindrica, L. simplex, litter), (ii) moderately flammable fuels (A. schirensis, H. diplandra, mixture 3), and (iii) poorly flammable fuels (A. canaliculatus and mixtures 1, 2, 4). These findings highlight the non-additive and species-specific nature of savanna fuel flammability, with direct implications for fire intensity, severity, and management. This trait-based approach provides a foundation for predicting fire behavior in West African savannas and for integrating species-level flammability into conservation-oriented fire management.

Abbadie L, Gignoux J, Le Roux X, Lepage M. 2006. Lamto : structure, functioning and dynamics of a savanna ecosystem. New York: Springer. http://www.documentation.ird.fr/hor/fdi:010039255

Alam AMD, Wyse SV, Buckley HL, Perry GLW, Sullivan JJ, Mason NWH, Buxton R, Richardson SJ, Curran TJ. 2020. Shoot flammability is decoupled from leaf flammability, but controlled by leaf functional traits. Journal of Ecology 108(2), 641–653. https://doi.org/10.1111/1365-2745.13289

Alessio GA, Peñuelas J, De Lillis M, Llusià J. 2008. Implications of foliar terpene content and hydration on leaf flammability of Quercus ilex and Pinus halepensis. Plant Biology 10(1), 123–128. https://doi.org/10.1111/j.1438-8677.2007.00011.x

Allaerts W. 2023. The unified neutral theory of biodiversity and biogeography revisited. Advances in Earth and Environmental Science 4(2), 1–10. https://doi.org/10.47485/2766-2624.1032

Anderson HE. 1970. Forest fuel ignitibility. Fire Technology 6(4), 312–319. https://doi.org/10.1007/BF02588932

Archer SR, Andersen EM, Predick KI, Schwinning S, Steidl RJ, Woods SR. 2017. Woody plant encroachment: causes and consequences. In: Briske DD, editor. Rangeland systems: processes, management and challenges. Cham: Springer International Publishing., p. 25–84. https://doi.org/10.1007/978-3-319-46709-2_2

Beckage B, Platt WJ, Gross LJ. 2009. Vegetation, fire, and feedbacks: a disturbance‐mediated model of savannas. The American Naturalist 174(6), 805–818. https://doi.org/10.1086/648458

Biggs CR, Yeager LA, Bolser DG, Bonsell C, Dichiera AM, Hou Z, Keyser SR, Khursigara AJ, Lu K, Muth AF, Negrete B, Erisman BE. 2020. Does functional redundancy affect ecological stability and resilience? A review and meta‐analysis. Ecosphere 11(7), e03184. https://doi.org/10.1002/ecs2.3184

Bond W, Keeley J. 2005. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends in Ecology and Evolution 20(7), 387–394. https://doi.org/10.1016/j.tree.2005.04.025

Bowman DMJS, French BJ, Prior LD. 2014. Have plants evolved to self-immolate? Front Plant Sci 5, 590. https://doi.org/10.3389/fpls.2014.00590

Burger N, Bond WJ. 2015. Flammability traits of Cape shrubland species with different post-fire recruitment strategies. South African Journal of Botany 101, 40–48. https://doi.org/10.1016/j.sajb.2015.05.026

Byram GM. 1959. Combustion of forest fuels. In: Davi KP, editor. Forest fire: control and use. New York, NY, USA: McGraw-Hill. p. 61–89

Calitz W, Potts AJ, Cowling RM. 2015. Investigating species-level flammability across five biomes in the Eastern Cape, South Africa. South African Journal of Botany 101, 32–39. https://doi.org/10.1016/j.sajb.2015.07.005

Cardoso AW, Oliveras I, Abernethy KA, Jeffery KJ, Lehmann D, Edzang Ndong J, McGregor I, Belcher CM, Bond WJ, Malhi YS. 2018. Grass species flammability, not biomass, drives changes in fire behavior at tropical forest-savanna transitions. Frontiers in Forests and Global Change 1(6), 1–14. https://www.frontiersin.org/articles/10.3389/ffgc.2018.00006

Case MF, Staver AC. 2017. Fire prevents woody encroachment only at higher-than-historical frequencies in a South African savanna. Journal of Applied Ecology 54(3), 955–962. https://doi.org/10.1111/1365-2664.12805

Clarke PJ, Prior LD, French BJ, Vincent B, Knox KJE, Bowman DMJS. 2014. Using a rainforest-flame forest mosaic to test the hypothesis that leaf and litter fuel flammability is under natural selection. Oecologia 176(4), 1123–1133. https://doi.org/10.1007/s00442-014-3071-y

Cornwell WK, Elvira A, van Kempen L, van Logtestijn RSP, Aptroot A, Cornelissen JHC. 2015. Flammability across the gymnosperm phylogeny: the importance of litter particle size. New Phytologist 206(2), 672–681. https://doi.org/10.1111/nph.13317

Cui X, Paterson AM, Wyse SV, Alam MA, Maurin KJL, Pieper R, Padullés Cubino J, O’Connell DM, Donkers D, Bréda J, Buckley HL, Perry GLW, Curran TJ. 2020. Shoot flammability of vascular plants is phylogenetically conserved and related to habitat fire-proneness and growth form. Nat Plants 6(4), 355–359. https://doi.org/10.1038/s41477-020-0635-1

Davies GM, Legg CJ. 2011. Fuel moisture thresholds in the flammability of Calluna vulgaris. Fire Technology 47(2), 421–436. https://doi.org/10.1007/s10694-010-0162-0

Dayamba SD, Savadogo P, Zida D, Sawadogo L, Tiveau D, Oden PC. 2010. Fire temperature and residence time during dry season burning in a Sudanian savanna-woodland of West Africa with implication for seed germination. Journal of Forestry Research 21(4), 445–450. https://doi.org/10.1007/s11676-010-0095-y

Fischer FM, De Bello F. 2023. On the uniqueness of functional redundancy. npj biodiversity 2(1), 23. https://doi.org/10.1038/s44185-023-00029-z

Gill AM, Zylstra P. 2005. Flammability of Australian forests. Australian Forestry 68(2), 87–93. https://doi.org/10.1080/00049158.2005.10674951

Gross N, Suding KN, Lavorel S, Roumet C. 2007. Complementarity as a mechanism of coexistence between functional groups of grasses. Journal of Ecology 95(6), 1296–1305. https://doi.org/10.1111/j.1365-2745.2007.01303.x

Guerrero F, Carmona C, Hernández C, Toledo M, Arriagada A, Espinoza L, Bergmann J, Taborga L, Yañez K, Carrasco Y, Muñoz AA. 2022. Drivers of flammability of Eucalyptus globulus labill leaves: terpenes, essential oils, and moisture content. Forests 13(6), 908. https://doi.org/10.3390/f13060908

Guerrero F, Hernández C, Toledo M, Espinoza L, Carrasco Y, Arriagada A, Muñoz A, Taborga L, Bergmann J, Carmona C. 2021. Leaf thermal and chemical properties as natural drivers of plant flammability of native and exotic tree species of the Valparaíso Region, Chile. International Journal of Environmental Research and Public Health 18(13), 7191. https://doi.org/10.3390/ijerph18137191

Kelsey RG, Westlind DJ. 2017. Physiological stress and ethanol accumulation in tree stems and woody tissues at sublethal temperatures from fire. BioScience 67(5), 443-451. https://doi.org/10.1093/biosci/bix037

Koffi KF, N’Dri AB, Konaré S, Srikanthasamy T, Lata J-C, Konaté S, Konan M, Barot S. 2022. Demography of the dominant perennial grass species of a humid African savanna. Acta Oecologica 114, 103816. https://doi.org/10.1016/j.actao.2022.103816

Koffi KF, N’Dri AB, Lata J-C, Konaté S, Srikanthasamy T, Konaré S, Konan M, Barot S. 2019. Effect of fire regimes on the demographic parameters of the perennial tussock grasses of a humid savanna. Journal of Vegetation Science 30(5), 950-962. https://doi.org/10.1111/jvs.12788

Koffi KF. 2019. Impact du feu sur la démographie des Graminées de savane. Ph.D. thesis, Sorbonne Université – Université Nangui Abrogoua, France-Côte d’Ivoire, p. 1-214. http://www.documentation.ird.fr/hor/fdi:010075970

Kpangba KP, N’Dri AB, Bakayoko A. 2022. Capacité de germination des graines et résistance aux feux des plantules des principales espèces ligneuses en savane guinéenne (Afrique de l’Ouest). REB-PASRES 7(1), 61-73. www://rebpasres.org

Kraaij T, Msweli ST, Potts AJ. 2022. Fuel trait effects on flammability of native and invasive alien shrubs in coastal fynbos and thicket (Cape Floristic Region). PeerJ 10, e13765. https://doi.org/10.7717/peerj.13765

Kraaij T, Msweli ST, Potts AJ. 2024. Flammability of native and invasive alien plants common to the Cape Floristic Region and beyond: Fire risk in the wildland–urban interface. Trees, Forests and People 15, 100513. https://doi.org/10.1016/j.tfp.2024.100513

Lowe S, Browne M, Boudjelas M, De Poorter M. 2007. 100 of the world’s worst invasive alien species: A selection from the Global Invasive Species Database. IUCN. New Zealand: Hollands Printing Ltd. https://portals.iucn.org/library/node/8565

Menaut J-C, Abbadie L. 2006. Vegetation. In: Abbadie L, Gignoux J, Le Roux X, Lepage M, editors. Lamto. Vol. 179. Springer, New York. p. 63-74. https://doi.org/10.1007/0-387-33857-8_5

Midgley JJ. 2013. Flammability is not selected for, it emerges. Australian Journal of Botany. 61(2), 102-106. https://doi.org/10.1071/BT12289

N’Dri AB, Kpré AJ-N, Koffi KP, Soro DT, Koffi VK, Koffi KF, Kouamé YAG, Koffi AB, Konan NL. 2021. Experimental study of fire behavior in annually burned humid savanna of West Africa in the context of bush encroachment. In: Leal Filho W, Pretorius R, De Sousa LO, editors. Sustainable Development in Africa. Leal Filho, W., Pretorius, R., de Sousa, L.O. Cham, Switzerland: Springer, p. 491-505. https://doi.org/10.1007/978-3-030-74693-3

Osborne CP, Salomaa A, Kluyver TA, Visser V, Kellogg EA, Morrone O, Vorontsova MS, Clayton WD, Simpson DA. 2014. A global database of C4 photosynthesis in grasses. New Phytologist 204(3), 441-446. https://doi.org/10.1111/nph.12942

Pausas JG, Alessio GA, Moreira B, Corcobado G. 2012. Fire enhance flammability in Ulex parviflorus. New Phytologist 193,18-23.

Pausas JG, Keeley JE, Schwilk DW. 2017. Flammability as an ecological and evolutionary driver. Journal of Ecology 105(2), 289-297. https://doi.org/10.1111/1365-2745.12691

Plucinski MP, Anderson WR. 2008. Laboratory determination of factors influencing successful point ignition in the litter layer of shrubland vegetation. International Journal of Wildland Fire 17(5), 628-637. https://doi.org/10.1071/WF07046

Prior LD, Murphy BP, Williamson GJ, Cochrane MA, Jolly WM, Bowman DMJS. 2017. Does inherent flammability of grass and litter fuels contribute to continental patterns of landscape fire activity? Journal of Biogeography 44(6), 1225-1238. https://doi.org/10.1111/jbi.12889

R Core Team. 2021. R: A language and environment for statistical computing [Internet]. https://www.R-project.org/

Santana VM, Marrs RH. 2014. Flammability properties of British heathland and moorland vegetation: Models for predicting fire ignition. Journal of Environmental Management 139, 88-96. https://doi.org/10.1016/j.jenvman.2014.02.027

Santoni PA, Bartoli P, Simeoni A, Torero JL. 2014. Bulk and particle properties of pine needle fuel beds- influence on combustion. International Journal of Wildland Fire 23(8), 1076-1086. https://doi.org/10.1071/WF13079

Saura-Mas S, Paula S, Pausas JG, Lloret F. 2010. Fuel loading and flammability in the Mediterranean Basin woody species with different post-fire regenerative strategies. International Journal of Wildland Fire 19(6), 783-794. https://doi.org/10.1071/WF09066

Schwilk DW, Ackerly DD. 2001. Flammability and serotiny as strategies: correlated evolution in pines. Oikos 94(2), 326-336. https://doi.org/10.1034/j.1600-0706.2001.940213.x

Simpson KJ, Ripley BS, Christin P-A, Belcher CM, Lehmann CER, Thomas GH, Osborne CP. 2016. Determinants of flammability in savanna grass species. Journal of Ecology 104(1), 138-148. https://doi.org/10.1111/1365-2745.12503

Tiemoko DT, Yoroba F, Diawara A, Kouadio K, Kouassi BK, Yapo ALM. 2020. Understanding the local carbon fluxes variations and their relationship to climate conditions in a sub-humid savannah-ecosystem during 2008-2015: case of Lamto in Cote d’Ivoire. Atmospheric and Climate Sciences 10(2), 186-205. https://doi.org/10.4236/acs.2020.102010

White RH, Zipperer WC. 2010. Testing and classification of individual plants for fire behaviour: plant selection for the wildland- Urban interface. International Journal of Wildland Fire 19(2), 213-227. https://doi.org/10.1071/WF07128

Zhang W, Liu G. 2015. Coevolution: A synergy in biology and ecology. Selforganizology. 2(2), 35-38.

Related Articles

Sensory qualities, proximate composition and microbial activity of cacao pod-based food products

John Carlo L. Banan, Aiza T. Ramos, Int. J. Biosci. 27(4), 48-56, October 2025.

Perception of oil palm producers on infestations of Trabanta rufisquamata defoliating caterpillars in palm groves in southern Benin

Abilou Oloyiwola Olorounto, Hervé Nonwegnon Sayimi Aholoukpe, Micheline Vignon Hintenou, Houngan Judicaël Yelian Yan, Ladekpo Sylvain Ogoudjobi, Antoine Badou, Aimé H. Bokonon-Ganta, Int. J. Biosci. 27(4), 34-47, October 2025.

Fire spread control for management purpose: Fuel moisture critical threshold in annually burned dry savanna of west Africa

Tionhonkélé Drissa Soro, Jean-Luc Kouassi, Bareremna Afelu, Amara Ouattara, Moussa Koné, Int. J. Biosci. 27(4), 19-33, October 2025.

Renal protection by Okra (Abelmoschus esculentus) seed oil against cadmium toxicity in male rats

Amani A. R. Filimban, Nada O. Batais, Int. J. Biosci. 27(4), 8-18, October 2025.

Effects of an organic amendment based on biodigester effluent on cotton yield parameters in the Cascades region of Burkina Faso

F. Y. Lankoande, A. Bamogo, M. Traore, S. Ouedraogo, Int. J. Biosci. 27(4), 1-7, October 2025.

Organic feed additive Alpha-Bio+ as an alternative to chemical antibiotics: Effect on zootechnical performance and coccidial burden in laying hens Lohmann Brown

Coulibaly Assetou Ya, Yapi Jean Noel, Kadjo Vincent, Ouattara N’Golo , Yao Kouakou, Int. J. Biosci. 27(3), 221-228, September 2025.

Effects of different postharvest treatments on the physicochemical properties and shelf life of fresh-cut Mango and Guava

Rashiduzzaman Emran, , Md. Mejbah Uddin, Md. Mahmudul Hasan Manik, Md. Nuruddin Miah, Int. J. Biosci. 27(3), 210-220, September 2025.

Ectoparasites encountered on Guinea fowl (Numida meleagris) in Ahoué (Alépé, Côte d’Ivoire)

Zouh Bi Zahouli Faustin, Oussou Konan Alexis, Tiba Aristide, Konan Amoin Rachelle, Karamoko Yahaya, Int. J. Biosci. 27(3), 201-209, September 2025.