Multiple insecticide resistance in Anopheles gambiae (Diptera: Culicidae) from tori-bossito, republic of Benin

Paper Details

Research Paper 01/01/2020
Views (695)
current_issue_feature_image
publication_file

Multiple insecticide resistance in Anopheles gambiae (Diptera: Culicidae) from tori-bossito, republic of Benin

Yadouleton Anges, Namountougou Moussa, Dramane Gado, Sanoussi Falilath, Badou Yvette, Hounkanrin Gildas, Agbanrin, Ramziyath, Baba-Moussa Lamine
Int. J. Biosci. 16(1), 294-300, January 2020.
Copyright Statement: Copyright 2020; The Author(s).
License: CC BY-NC 4.0

Abstract

In order to detect the multiple insecticide resistance in Anopheles gambiae populations in the district of Tori-Bossito, southern Benin from June-September 2019, firstly adult females aged to 2-5 were subjected to susceptible test using impregnated papers (Permethrin 0.75%, delthamethrin 0.05%, DDT 4%, and bendiocarb 0.1%) following WHO testing protocol. Death and survival of An. gambiae populations from the test were screened for knock down resistance (KDR) and acetylcholinesterase (Ace-1R) mutations. Finally, biochemical analysis was done in order to detect Mixed Function Oxydase (MFO), non-specific esterase (NSE) and glutathione-S-transferases (GST) activity in individual 2–5 days old adult An. gambiae that had been reared from larvae and not previously exposed to insecticides. This research showed that An. gambiae populations from urban and rural areas were of resistance to DDT (2% as a means of mortality), permethrin (40%) and delthamethrin (72%) but fully susceptible bendiocarb. The kdr mutation due to the use of insecticides was the main resistance mechanism identified in these An. gambiae populations (0.72 as a means of frequency). The Ace-1 mutation was found at a very low frequency (≤ 5%). Moreover, enzymatic activities (Esterase, Glutathione-s-transferase (GST) and P450 monooxygenase) in the wild population of An. Gambiae were significantly higher than the control strain (P < 0,05). This study provides clear evidence that there is a multiple insecticide resistance in Anopheles gambiae populations from Tori-Bossito. This will jeopardise the successful of fighting against malaria in this district.

Aikpon R, Osse R, Govoetchan R, Sovi A, Oke-Agbo F, Akogbeto MC. 2013. Entomological baseline data on malaria transmission and susceptibility of Anopheles gambiae to insecticides in preparation for indoor residual spraying (IRS) in Atacora, (Benin). Journal of Parasitology and Vector Biology 5, 102-111.

Akogbéto M, Djouaka R, Noukpo H. 2005. Use of agricultural insecticides in Benin Bulletin de la Société de Pathologie Exotique 98, 400-405.

Akogbéto M, Padonou G, Bankolé H, Kindé Gazard D, Gbédjissi G. 2011. Dramatic decline of malaria transmission after implementation of large-scale Indoor Residual Spraying using bendiocarb in Bénin, West Africa, an area of high Anopheles gambiae resistance to pyrethroids. American Journal of Tropical Medicine and Hygiene 85, 586-593.

Amoudji AD, Ahadji-Dabla KM, Hien AS, Apétogbo YG, Yaméogo B, Soma DD, Bamogo R, Atcha‑ Oubou RT, Dabiré RK, Ketoh GK. 2019. Insecticide resistance profiles of Anopheles gambiae s.l. in Togo and genetic mechanisms involved, during 3-year survey: is there any need for resistance management. Malaria Journal 18, 177-190.

Dykes C, Kushwah R, Das M, Sharma S, Bhatt R, Veer V. 2015. Knockdown resistance (kdr) mutations in Indian Anopheles culicifacies populations. Parasitology Vectors 8, 333-340.

Joncour G. 1959. Lutte anti-palustre au Dahomey. Rapport no 13: Ministère de la Santé Publique 11, 72-105.

Mint Lekweiry K, Ould Ahmedou Salem MS, Basco LK, Briolant S, Hafid JE, Ould Mohamed Salem Boukhary A. 2015. Malaria in Mauritania: retrospective and prospective overview. Malaria Journal 14, 100-109.

Penilla RP, Rodriguez AD, Hemingway J, Torres JL, Arrendo-Jimenez JI, Rodriguez MH. 1998. Resistance management strategies in malaria vector mosquito control. Baseline data for a large scale field trial against Anopheles albimanus in Mexico. Medical and Veterinary Entomology 12, 217-233

Riveron JM, Yunta C, Ibrahim SS, Djouaka R, Irving H. 2014. A single mutation in the GSTe2 gene allows tracking of metabolically-based insecticide resistance in a major malaria vector. Genome Biology 15, 27-36.

Syafruddin D, Hidayati AP, Asih PB, Hawley WA, Sukowati S, Lobo NF. 2010. Detection of 1014F kdr mutation in four major Anopheline malaria vectors in Indonesia. Malaria Journal 9, 315-322.

Weill M, Lutfalla G, Mogensen K. 2003. Insecticide resistance in mosquito vectors. Nature 423, 136-137.

WHO. 2014. WHO Guidance for Countries on Combining Indoor Residual Spraying and Long-lasting Insecticidal Nets. https://www.who.int /malaria/publications/atoz/who-guidance-combining –irs -llins/en/

WHO. 2016. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. http:// www.who.int

WHO. 2017. Malaria fact sheet. Geneva. https://www.who.int/en/news-room/fact-sheets

Yadouleton Anges, Lamine Baba-Moussa, Jean-Robert Klotoe, Tenin Coulibaly, Tchibozo Carine, Roland Tossou, Fabrice Ahissou and Martin Akogbeto. 2018. Detection of multiple insecticide resistance mechanisms in Anopheles gambiae s.l. populations from the vegetable farming area of Houeyiho, Southern Benin, West Africa. International Journal of Mosquito Research 5, 21-23.

Yadouleton AW, Asidi A, Djouaka RF, Braïma J, Agossou CD, Akogbeto MC. 2009. Development of vegetable farming: a cause of the emergence of insecticide resistance in populations of Anopheles gambiae in urban areas of Benin. Malaria Journal 8, 103-10.

Related Articles

Sensory evaluation of horn snail (Telescopium telescopium) patty

Ma. Isabel P. Lanzaderas, Gilbert P. Panimdim, Proceso C. Valleser Jr.*, Int. J. Biosci. 28(2), 7-16, February 2026.

Two years evolution of deltamethrin, malathion and pirimiphos-methyl resistance in Aedes aegypti from urban in peri urban sites of Ouagadougou, Burkina Faso

Hyacinthe K. Toe*, Moussa W. Guelbeogo, Soumananaba Zongo, Aboubacar Sombie, Athanase Badolo, Int. J. Biosci. 28(2), 1-6, February 2026.

Physicochemical characterization of annatto seeds (Bixa orellana) sold in Ouagadougou and their oils extracted using chemical processes

Mah Alima Esther Traoré*, Adama Lodoun, Pingdwindé Marie Judith Samadoulougou-Kafando, Nestor Beker Dembélé, Kiswendsida Sandrine Léticia Dayamba, Charles Parkouda, Int. J. Biosci. 28(1), 169-178, January 2026.

Inventory of african yam bean (Sphenostylis stenocarpa (Hochst. ex A. Rich.) Harms) diversity in some Yoruba areas of Benin

Orobiyi Azize*, Faton Manhognon Oscar Euloge, Zongo Élisabeth Aboubié, Sossou Kpèdé Nicodème, Houngbo Marcel, Dossou Pierre Fourier, Ogoudjobi Ladékpo Sylvain, Balogoun Ibouraïman, Dansi Alexandre, Lokoyêyinou Laura Estelle, Int. J. Biosci. 28(1), 161-168, January 2026.

A severe case of human hepatic fascioliasis mimicking an oncological disease in Azerbaijan

Aygun A. Azizova*, Int. J. Biosci. 28(1), 155-160, January 2026.

Combined effect of irrigation frequency and leaf harvesting intensity on soil water content and productivity of baobab (Adansonia digitata) seedlings in vegetable production

Sissou Zakari, Imorou F. Ouorou Barrè, Mouiz W. I. A. Yessoufou*, Colombe E. A. E. Elegbe, Amamath S. Boukari, P. B. Irénikatché Akponikpè, Int. J. Biosci. 28(1), 143-154, January 2026.

Develop sustainable coffee-based farming model using cash crops production

Maribel L. Fernandez, Roje Marie C. Rosqueta*, Diosa G. Alasaas, Boyet C. Pattung, Jaylord Dalapo, Janette Empleo, Int. J. Biosci. 28(1), 134-142, January 2026.

Animal anthrax in northern Tanzania (2015-2025): Epidemiological trends and frontline response capacity

Yohana Michael Kiwone*, Beatus Lyimo, Rowenya Mushi, Joram Buza, Int. J. Biosci. 28(1), 123-133, January 2026.