Yields, zoochemical profiles, and antioxidant activities of extracts from freshwater clam (Corbicula fluminea) using different solvents

Paper Details

Research Paper 01/01/2019
Views (1018)
current_issue_feature_image
publication_file

Yields, zoochemical profiles, and antioxidant activities of extracts from freshwater clam (Corbicula fluminea) using different solvents

Simonette C. Villabeto, Romeo M. Del Rosario, Oliva P. Canencia
Int. J. Biosci. 14(1), 174-182, January 2019.
Copyright Statement: Copyright 2019; The Author(s).
License: CC BY-NC 4.0

Abstract

Freshwater clam is among the many aquatic organisms that possessed many medical and biological effects. Several factors may affect the growth of phytoplankton, and so will likewise affect the secondary metabolites present. The study aimed to determine the crude extract yields, zoochemical profiles, and the antioxidant activities of the freshwater clam (Corbicula fluminea) using ethanol, ethyl acetate and hexane as extracting solvents. Established test procedures were used to test the presence of prominent groups of zoochemicals. The antioxidant activity was assayed using free radical scavenging activities on 2,2-diphenyl-1- picrylhydraziyl (DPPH˙) radical. The results showed that the crude extract yield using ethanol (120.49±0.35 mg/g) is significantly higher than ethyl acetate (98.09±0.43) and hexane (82.81±0.06). The following secondary metabolites were found, namely: terpenoids, phenols, tannins, saponins, steroids, and alkaloids. The presence of phenolic substances and maybe other substances account for the antioxidant activities. Results of the study revealed that the scavenging effects of the crude extracts were in a concentration-dependent manner. Ethyl acetate extract showed the highest scavenging activity expressed as percentage inhibition, 30.25% at the highest tested concentration (1000 ppm) and 24.47% for the lowest tested concentration (100 ppm) while hexane extract showed the lowest scavenging activity with 25.52% (1000 ppm), and 19.08% (100 ppm). The three crude extracts of the freshwater clam demonstrate considerable antioxidant effects making the clam a promising nutritional food. As a health-promoting food, it will not just provide proteins, lipids, and others, but also remedies for oxidative stress.

Abad MJ, Bedoya LM, Bermejo P. 2011. Marine Compounds and their Antimicrobial Activities. Science against microbial pathogens: communicating current research and technological advances.  A. Méndez-Vilas (Ed.).

Al Hafiz Md. 2010. Preliminary Phytochemical Screening, Antioxidant Activity and Cytotoxic Activity Evaluation of Spondias pinnata Barks. Unpublished Thesis, East West University, Aftabnagar, Dhaka.

Babbar N. 2015. An introduction to alkaloids and their applications in pharmaceutical chemistry. The Pharma Innovation Journal 4(10), 74-75.

Chijimatsu T, Tatsugushi I, Abe K, Oda H, Mochizuki S. 2008. A Freshwater clam (Corbicula fluminea) extract improves cholesterol metabolism in rats fed on a high-cholesterol diet. Bioscience Biotechnology and Biochemistry 72(10), 2566-2571.

De las Heras B, Rodríguez B, Boscá L, Villar AM. 2003. Terpenoids: Sources, Structure Elucidation and Therapeutic Potential in Inflammation. Current Topics in Medicinal Chemistry 3, 53-67.

Devasagayam TPA, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele KD. 2004. Free Radicals and Antioxidants in Human Health: Current Status and Future Prospects. Review Article, Journal of the Association of Physicians of India 52.

Do QM, Ankkawijaya AE, Nguyen PLT, Huynh LH, Soetaredjo FE, Ismadji S. 2013. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatic. Journal of Food and Drug Analysis 22, 296-302. http://dx.doi.org/10.1016/j.jfda.2013.11.001

Eswar A, Isha Z, Shanmugasundaram S, Ramammoorthy K, Nanda RK. 2015. Evaluation of Preliminary Qualitative Analysis of Clam Paphia malabarica extracts from Girgon Chowpatty Creek, Mumbai. Journal of Pharmaceutical, Chemical, and Biological Sciences 3(4), 461-468.

Eswar A, Nanda RK, Ramammoorthy K, Isha Z, Gokulakrishnan S. 2016. Biochemical Composition and Preliminary Qualitative Analysis of Marine Clam Gafrarium divaricatum (Gmelin) from Mumbai, West Coast of India. Asian Journal of Biomedical and Pharmaceutical Sciences 6(55), 01-06.

Hsu CL, Hsu CC, Yen GC. 2010. Hepatoprotection by freshwater clam extract against CCl4-induced hepatic damage in rats. American Journal of Chinese Medicine 38, 881–894.

Khanbabaee K, Ree TV. 2001. Tannins: Classification and Definition. Natural Products Reports 18, 641–649.

Kong ZL, Yu SC, Dai SA, Tu CC, Pan MH, Liu YC. 2011. Polyoxygenated Sterols from freshwater Clam. Helvetica Chimica Acta 94, 892-896.

Koyama T, Chounan R, Uemura D, Yamaguchi K, Yazawa K. 2006. Hepatoprotective effect of a hot-water extract from the edible thorny oyster Spondylus varius on carbon tetrachloride-induced liver injury in mice. Bioscience Biotechnology and Biochemistry 70(3), 729-731.

Khedher O, Moussaoui Y, Salem RB. 2014. Solvent Effects on Phenolic Contents and Antioxidant Activities of the Echinops Spinosus and the Limoniastrum MonopetalumResearch Journal of Pharmaceutical, Biological, and Chemical Sciences 5(2), 66-76.

Marwat GA, Khan AR, Hussain I, Kalsoom S. 2005. A Review on Naturally Occurring Steroids. Journal Chemical Society of Pakistan 27(4).

Odeleye T, Li Y, White WL, Nie S, Chen S, Wang J, Lu J. 2016. The antioxidant potential of the New Zealand surf clams. Food Chemistry 204, 141–149.

Percival M. 1998. Antioxidants. Clinical Nutrition Insights. Copyright © 1996 Advanced Nutrition Publications, Inc., Revised 1998.

Sharma B. 2017. The Role of Flavonoids in Plants. International Journal of Engineering Research & Management Technology 4(1), 76-82.

Thambidurai Y, Sudarsanam D, Habeeb SKM, Kizhakudan JK. 2017. Screening of Bioactive Compounds from Marine Sponges collected from Kovalam, Chennai. Asian Journal of Pharmaceutical and Clinical Research 10(5), 231-236. https://doi.org/10.22159/ajpcr:2017.v10i517347

Tomsone L, Kruma Z, Galoburda R. 2012. Comparison of Different Solvents and Extraction Methods for Isolation of Phenolic Compounds from Horseradish Roots (Armoracia rusticana). International Journal of Agricultural and Biosystems Engineering 6(4), 236-241.

Related Articles

Evaluation of the impact of floristic diversity on the productivity of cocoa-based agroforestry systems in the new cocoa production area: The case of the Biankouma department (Western Côte d’Ivoire)

N'gouran Kobenan Pierre, Zanh Golou Gizele*, Kouadio Kayeli Anaïs Laurence, Kouakou Akoua Tamia Madeleine, N'gou Kessi Abel, Barima Yao Sadaiou Sabas, Int. J. Biosci. 28(1), 44-55, January 2026.

Utilization of locally sourced feed ingredients and their influence on the growth performance of broiler chickens (Gallus gallus domesticus): A study in support of the school’s chicken multiplier project

Roel T. Calagui*, Maricel F. Campańano, Joe Hmer Kyle T. Acorda, Louis Voltaire A. Pagalilauan, Mary Ann M. Santos, Jojo D. Cauilan, John Michael U. Tabil, Int. J. Biosci. 28(1), 35-43, January 2026.

Knowledge, attitudes, and practices regarding malaria prevention and the use of long lasting insecticidal nets after mass distribution campaigns in northern Côte d’Ivoire

Donatié Serge Touré, Konan Fabrice Assouho*, Konan Rodolphe Mardoché Azongnibo, Ibrahim Kounady Ouattara, Foungoye Allassane Ouattara, Mamadou Doumbia, Int. J. Biosci. 28(1), 28-34, January 2026.

Characterization of stands and evaluation of carbon sequestration capacity of shea parklands (Vitellaria paradoxa C. F. Gaertn., Sapotaceae) in the departments of Dabakala and Kong, Ivory Coast

Konan Nicolas Kouamé*, Lacina Fanlégué Coulibaly, Mohamed Sahabane Traoré, Eric-Blanchard Zadjéhi Koffi, Nafan Diarrassouba, Int. J. Biosci. 28(1), 1-15, January 2026.

Muscle type and meat quality of local chickens according to preslaughter transport conditions and sex in Benin

Assouan Gabriel Bonou*, Finagnon Josée Bernice Houéssionon, Kocou Aimé Edenakpo, Serge Gbênagnon Ahounou, Chakirath Folakè Arikè Salifou, Issaka Abdou Karim Youssao, Int. J. Biosci. 27(6), 241-250, December 2025.

Effects of micronutrients and timing of application on the agronomic and yield characteristics of cucumber (Cucumis sativus)

Princess Anne C. Lagcao, Marissa C. Hitalia*, Int. J. Biosci. 27(6), 214-240, December 2025.