An in vitro antagonistic activity evaluation of rhizobacteria against Fusarium oxysporum f. sp. radicis-lycopersici (Forl) isolated from the Algerian west.

Paper Details

Research Paper 01/07/2015
Views (572)
current_issue_feature_image
publication_file

An in vitro antagonistic activity evaluation of rhizobacteria against Fusarium oxysporum f. sp. radicis-lycopersici (Forl) isolated from the Algerian west.

Wassim Yezli, Nebia Zebboudj-Yezli, Nisserine Hamini-Kadar, Mebrouk Kihal, Jamal Eddine Henni
Int. J. Biosci. 7(1), 95-103, July 2015.
Copyright Statement: Copyright 2015; The Author(s).
License: CC BY-NC 4.0

Abstract

The use of biological antagonists is a promising technique for the protection of plants without having a fatal effect on the environment. The in vitro confrontation tests is an obligatory step for the selection of successful antagonistic agents, what has ends in our study to the selection of two rhizobacteria: Bacillus subtilis and Pseudomonas fluorescens, isolated from the rhizosphere of tomato healthy plants and which were tested for their in vitro inhibitive power against five isolates of Fusarium oxysporum f. sp. radicis-lycopersici (Forl). The results of the direct confrontation on different culture media demonstrated that rhizobacteria have an inhibitive effect on the pathogenic, while noticing a performance of P. fluorescens with an inhibition which varies between 73,77 and 80 %, comparing with 56,36 and 60,46 % for B. subtilis. The inhibition by volatile substances of P. fluorescens varies between 25 and 39,53 %, compared with 18,86 and 32,55 % by volatile substances of B. subtilis. Rhizobacterial cell-free supernatant showed an inhibition from the first until the seventh incubation day against the five fungal isolates, when mycelia growth reaches 5±0,2 cm in presence of P. fluorescens cell free supernatant, and it reaches 5,9±0,3 cm in presence of B. subtilis cell free supernatant compared with 8,5 cm on control plates without rhizobacteria cell free supernatant.

Abdulkareem M, Aboud HM, Saood HM, Shibly MK. 2014. Antagonistic activity of some plant growth rhizobacteria to Fusarium graminearum. International Journal of Phytopathology 3, 49-54.

Ahmed Idris H, Labuschagnea N, Korstena L. 2007. Screening rhizobacteria for biological control of Fusarium root and crown rot of sorghum in Ethiopia. Biological control 40, 97-106. http://dx.doi.org/10.1016/j.biocontrol.2006.07.017

Altinok HH, Dikilitas  M, Yildiz HN. 2013. Potential  of  pseudomonas  and  bacillus isolates as biocontrol agents against Fusarium wilt of eggplant. Biotechnology  and  biotechnological  equipment  27, 3952-3958. http://dx.doi.org/10.5504/BBEQ.2013.0047

Ardebili ZO, Ardebili NO, Mahdi Hamdi SM. 2011. Physiological effects of Pseudomonas fluorescens CHA0 on tomato (Lycopersicon esculentum Mill.) plants and its possible impact on Fusarium oxysporum f. sp. lycopersici. Australian Journal of Crop Science 5, 1631-16-38.

Baysal Ö, Çalışkan M, Yeşilova Ö. 2008. An inhibitory effect of a new Bacillus subtilis strain (EU07) against Fusarium oxysporum f. sp. radicis- lycopersici. Physiological and Molecular Plant Pathology 73, 25-32. http://dx.doi.org/10.1016/j.pmpp.2008.11.002

Benchabane M, Bakour R, Toua D, Boutekrabt A. 2000. Mise en évidence de l’effet antagoniste de Pseudomonas fluorescens vis-à-vis de la fusariose vasculaire de la tomate. EPPO Bulletin 30, 243-246. http://dx.doi.org/10.1111/j.13652338.2000.tb00888. x

Booth C. 1985. The genus Fusarium. Commonwealth Mycological Institute, Kew, 3ème Edition.

Hamini N. 2010. Diversité génétique des populations de Fusarium pathogène de la tomate sur le pourtour méditerranéen. PhD thesis, University of Oran 1, Algeria.

Inam-ul-Haq M, Javed M, Ahmad R, Rehman A. 2003. Evaluation of different strains of Pseudomonas fluorescens for the biocontrol of Fusarium wilt of chick pea. Pakistan Journal of Plant Pathology 2, 65–74. http://dx.doi.org/10.3923/ppj.2003.65.74

Karimi K, Amini J, Harighi B, Bahramnejad B. 2012. Evaluation of biocontrol potential of Pseudomonas and Bacillus spp. against Fusarium wilt of chickpea. Australian Journal of Crop Science 6, 695-703.

Karkachi N, Gharbi S, Kihal M, Henni  JE. 2010. Biological control of Fusarium oxysporum f. sp. lycopersici isolated from Algerian tomato by Pseudomonas fluorescens, Bacillus subtilis, Serratia marcesens and Trichoderma harzianum. Research Journal of Agronomy 4, 31-34. http://dx.doi.org/10.3923/rjagr.2010.31.34

Kumar N, Thirumalai V, Gunasekaran P. 2002. Genotyping of antifungal compounds producing plant growth promoting rhizobacteria Pseudomonas flurescens. Current Science 82, 1463-1466.

Laref N, Guesses B. 2013. Antifungal activity of newly isolates of lactic acid bacteria. Innovative Romanian Food Biotechnology 13, 80-88.

Messiaen CM, Cassini R. 1968. Recherches sur les Fusarioses. IV-La systématique des Fusarium. Annales des Epiphytes19, 387-454.

Muhialdin B J, Hassan Z. 2011. Screening of lactic acid bacteria for antifungal activity against Aspergillus oryzae. American Journal of Applied Sciences 8, 447-451. http://dx.doi.org/10.3844/ajassp.2011.447.451

Myresiotis CK, Karaoglanidis GS, Vryzas Z, Papadopoulou-Mourkidou E. 2012. Evaluation of plant-growth-promoting rhizobacteria, acibenzolar-S-methyl and hymexazol for integrated control of Fusarium crown and root rot on tomato. Pest Management Science 68, 404-411. http://dx.doi.org/10.1002/ps.2277

Nandhini S, Sendhilvel V, Babu S. 2012. Endophytic bacteria from tomato and their efficacy against Fusarium oxysporum f. sp. lycopersici, the wilt pathogen. Journal of Biopesticides 5, 178-185.

Nelson PE, Tousson TA, Cook RJ. 1981. Fusarium: Diseases, Biology and Taxonomy. The Pennsylvana state University Press. University Parck and London.

Prashar P, Kapoor N, Sachdeva S. 2013. Isolation and characterization of Bacillus sp with in-vitro antagonistic activity against Fusarium oxysporum from rhizosphere of tomato. Journal of Agricultural Science and Technology 15, 1501-1512.

Jafar-Pour S, Hajieghrari B, Salehi A. 2008. A in vitro study on the fungicidal effects of Percidin 535® (Per Acitic Acid 15%) against phytopathogenic fungi. Biotechnology 7, 830-832.

Sansinenea E, Ortiz A. 2011. Secondary metabolites of soil Bacillus spp. Biotechnology Letters 33, 1523-1538. http://dx.doi.org/10.1007/s10529-011-0617-5

Ström K. 2005. Fungal inhibitory lactic acid bacteria:Characterization and application of Lactobacillus plantarum MiLAB 393. Doctor’s dissertation. ISSN 1652-6880, ISBN 91-576-7036-6

Sundaramoorthy S, Balabaskar P. 2013. Evaluation of Combined Efficacy of Pseudomonas fluorescens and Bacillus subtilis in Managing Tomato Wilt Caused by Fusarium oxysporum f. sp. lycopersici (Fol). Plant Pathology Journal 12, 154-161. http://dx.doi.org/10.3923/ppj.2013.154.161

Tan Z, Lin B, Zhang R. 2013. A novel antifungal protein of Bacillus subtilis B25. SpringerPlus 2, 543. http://dx.doi.org/10.1186/2193-1801-2-543

Uppal AK, Hadrami AE, Adam LR, Tenuta M, Daayf F. 2008. Biological control of potato Verticillium wilt under controlled and field conditions using selected bacterial antagonists and plant extracts. Biological Control 44, 90–100. http://dx.doi.org/10.1016/j.biocontrol.2007.10.020

Zebboudj N, Yezli W, Hamini-Kadar N, Kihal M, Henni JE. 2014. Antifungal activity of Lactic Acid  Bacteria  against  Fusarium  oxysporum  f.  sp. albedinis isolated from diseased date palm in south Algeria. International Journal of Biosciences 5, 99-106. http://dx.doi.org/10.12692/ijb/5.9.99-106

Zhang SS, Raza W, Yang XM, Hu J, Huang QW, Xu YC, Liu XH, Ran W, Shen QR. 2008. Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer. Biol Fertil Soils 44, 1073-1080.

Related Articles

Medicinal plants sold in Daloa markets: Traditional knowledge and Public health issues

Kouakou Yao Bertin, Kouakou Assoman Serge Alain, Kouame Yao Anicet Gervais, Malan Djah François, Bakayoko Adama, Int. J. Biosci. 27(2), 200-210, August 2025.

Agronomic performance and profitability of coffee wildlings using different soil media mixtures

Maribel L. Fernandez, Ricardo B. Casauay, Ronel A. Collado, Int. J. Biosci. 27(2), 189-199, August 2025.

Implications of aberrant glycosylation on age-related disease progression

Tahmid Ahmad Patwary, Mukramur Rahman, Md. Nafis Fuad Prottoy, Sayad Md. Didarul Alam, Int. J. Biosci. 27(2), 176-188, August 2025.

Design and development of solar powered water sprayer: A green technology innovation

Lorenzo V. Sugod, Int. J. Biosci. 27(2), 159-175, August 2025.

Knowledge, attitudes, practices, and social awareness regarding SARS-CoV-2 infection in the kyrgyz population in the post-pandemic period

Mirza Masroor Ali Beg, Haider Ali, Yahya Nur Ahmed, Yavuz Gunduz, Hafsa Develi, Tilekeeva UM, Int. J. Biosci. 27(2), 151-158, August 2025.

Tumor suppressing ability of myrtenal in DMBA-induced rat mammary cancer: A biochemical and histopathological evaluation

Manoharan Pethanasamy, Shanmugam M. Sivasankaran, Saravanan Surya, Raju Kowsalya, Int. J. Biosci. 27(2), 141-150, August 2025.

Assessing tree diversity in cashew plantations: Environmental and agronomic determinants in buffer zones of Mont Sangbé National Park, western Côte d’Ivoire

Kouamé Christophe Koffi, Kouakou Hilaire Bohoussou, Serge Cherry Piba, Naomie Ouffoue, Sylvestre Gagbe, Alex Beda, Adama Tondossama, Int. J. Biosci. 27(2), 122-133, August 2025.