Antiangiogenic and morphological effects of Cinnamomum cebuense Kosterm. leaf extracts on Anas platyrynchos L. embryonic development usingan in vivo chorioallantoic membrane (CAM) assay
Paper Details
Antiangiogenic and morphological effects of Cinnamomum cebuense Kosterm. leaf extracts on Anas platyrynchos L. embryonic development usingan in vivo chorioallantoic membrane (CAM) assay
Abstract
The theoretical efficacy of antiangiogenic treatment in tumor growth and other angiogenesis-dependent diseases offers a promising approach that leads to the robust search of angiogenesis inhibitors. Cinnamon species, widely used in food processing and other commercial industries, are among the medicinal plants currently being exploited by many cancer researches that involve inhibition of angiogenesis. The Cebu endemic Cinnamomum cebuense is popular for its bark as a remedy for stomachache, headache and toothaches. Phytochemicals found in many cinnamon species worldwide that were claimed to inhibit angiogenesis and tumor cell proliferation were also found in C. cebuense. However, there have been no reported studies that verified its antiangiogenic activity. In the present study, the C. cebuense’ santiangiogenic property was investigated via CAM assay with five different treatments of C. cebuense’s leaf aqueous extract (CCE) following a completely randomized design: 100% (T1), 50% (T2), 25% (T3), 12.5% (T4), and 6.25% (T5). Sixteen-day old duck eggs were harvested after 15 days incubation, embryos assessed morphologically, angiogenesis quantified by photo documentation of the CAMs, and fractal dimension index analyzed using Image J analysis software. Results revealed that crown to rump length (CRL), hindlimb, forelimb, and beak lengths for other treatments were not dose-dependent except for T1 (100%) where embryos were clearly stunted in all its morphological development. The lowest mean fractal index (MFI=0.3042) among the experimental groups was also evident in T1 (100%). The results show strong evidence that T1 (100%) is the most potent concentration for CCE that could inhibit angiogenesis, and thus possibly restrain proliferation and metastasis of cancer cells.
Bansode RR, Leung T, Randolph P, Williams LL, Ahmedna M. 2013. Cinnamon extract inhibits angiogenesis in zebra fish and human endothelial cells by suppressing VEGFR 1, VEGFR 2, and PKC‐mediated MAP kinase. Food Science and Nutrition 1, 74-82. http://dx.doi.org/10.1002/fsn3.13
Basile AC, Sertié JA, Freitas PC, Zanini AC. 1998. Anti-inflammatory activity of oleoresin from Brazilian Copaifera. Journal of Ethnopharmacology 22, 101-109.
Benzie IFF, Wachtel-Galor S. 2011. Herbal Medicine: An Introduction to Its History, Usage, Regulation, Current Trends, and Research Needs. In: Benzie IFF, Wachtel-Galor S, Eds.. Herbal Medicine: Biomolecular and Clinical Aspects, 2nd edition. Boca Raton, FL: CRC Press/Taylor & Francis, 1 – 10.
Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL. 2013. Ultrasensitive fluorescent proteins for imaging neuronal activity.Nature 499, 295. http://dx.doi.org/10.1038/nature12354.
Cohen Jr MM, Shiota K. 2002.Teratogenesis of holoprosencephaly. American Journal of Medical Genetics 109, 1-5. https://doi.org/10.1002/ajmg.10258
Del Fierro RS, Maquilang QM, Sanjorjo RA, Tradio MD, Shen CC, Ragasa CY. 2012. Secondary metabolites from Cinnamomum cebuense. Journal of Medicinal Plants Research 6, 2146-2149.http://dx.doi.org/10.5897/JMPR11.1379
Deryugina EI, Quigley JP. 2008. Chick embryo chorioallantoic membrane models to quantify angiogenesis induced by inflammatory and tumor cells or purified effect or molecules. Methods in Enzymology 444, 21-41. http://dx.doi.org/10.1016/S0076-6879(08)02802-4.
Espineli DL, Agoo EM, delFierro RS, Shen CC, Ragasa CY. 2014. Cytotoxic and Antimicrobial Compounds from Cinnamomum cebuense Kosterm. (Lauraceae). Pharmaceutical Chemistry Journal 48, 598-602. http://dx.doi.org/10.1007/s11094-014-1157-9
Ferriera T, RasbandW.2012. Image J 1.46r User Guide. Available as http://imagej.nih.gov/ij/docs/guide.
Gupta PK. 2017. Herbicides and fungicides. In: Gupta R, Ed. Reproductive and Developmental Toxicology. Second Edition. Cambridge, MA: Academic Press, 657-679.
Hamburger V, Hamilton HL. 1951. A series of normal stages in the development of the chick embryo. Journal of Morphology 88, 49-92. http://dx.doi.org/10.1002/aja.1001950404
Herrera MB, Fonsato V, Gatti S, Deregibus MC, Sordi A, Cantarella D, Calogero R, Bussolati B, Tetta C, Camussi G. 2010. Human liver stem cell‐derived microvesicles accelerate hepatic regeneration in hepatectomized rats. Journal of Cellular and Molecular Medicine 14, 1605-1618. http://dx.doi.org/10.1111/j.1582-4934.2009.00860
Hoffmann S, Rockenstein A, Ramaswamy A, Celik I, Wunderlich A, Lingelbach S, Hofbauer LC, Zielke A. 2007. Retinoic acid inhibits angiogenesis and tumor growth of thyroid cancer cells. Molecular and Cellular Endocrinology 264, 74-81. http://dx.doi.org/10.1016/j.mce.2006.10.009
Imai T, Yasuhara K, Tamura T, Takizawa T, Ueda M, Hirose M, Mitsumori K. 2002. Inhibitory effects of cinnamaldehyde on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induced lung carcinogenesis in rasH2 mice. Cancer Letters 175, 9-16.
Irvin MW, Zijlstra A, Wikswo JP, Pozzi A. 2014. Techniques and assays for the study of angiogenesis. Experimental Biology and Medicine 239, 1476-88. http://dx.doi.org/10.1177/1535370214529386
Jaafarpour M, Hatefi M, Najafi F, Khajavikhan J, Khani A. 2015. The effect of cinnamon on menstrual bleeding and systemic symptoms with primary dysmenorrhea. Iranian Red Crescent Medical Journal 17. http://dx.doi.org/10.5812/ircmj.17(4)2015.27032
Jin Won H, Kyoungttwa L, Jin ES. 1994. Antineoplastic effects of extracts from traditional medicinal plants. Korean Journal of Pharmacognosy 25, 171–177.
Ka H, Park HJ, Jung HJ, Choi JW, Cho KS, Ha J, Lee KT. 2003.Cinnamaldehyde induces apoptosis by ROS-mediated mitochondrial permeability transition in human promyelocytic leukemia HL-60 cells. Cancer letters 196, 143-152.
Kirchner LM, Schmidt SP, Gruber BS. 1996. Quantitation of angiogenesis in the chick chorioallantoic membrane model using fractal analysis. Microvascular research 51, 2-14. http://dx.doi.org/10.1006/mvre.1996.0002
Kwon HK, Hwang JS, So JS, Lee CG, Sahoo A, Ryu JH, Jeon WK, Ko BS, Im CR, Lee SH, Park ZY. 2010. Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1. BMC Cancer 10, 392. http://dx.doi.org/10.1186/1471-2407-10-392
Lorion M, Minyamin J, Puebla I, Tuñacao KJ, Picardal J. 2016. Angiogenic Potentials and Morphological Effects of Mindanao Cinnamon (Cinnamomum mindanaense) Extract on Mallard Duck (Anasplatyrynchos) Chorioallantoic Membrane. Undergraduate Thesis, Cebu Normal University, Philippines.125 p.
Legault J, Pichette A. 2007. Potentiating effect of β‐caryophyllene on anticancer activity of α‐humulene, isocaryophyllene and paclitaxel. Journal of Pharmacy and Pharmacology 59, 1643-1647. http://dx.doi.org/10.1211/jpp.59.12.0005
Manikandan P, Murugan RS, Priyadarsini RV, Vinothini G, Nagini S. 2010.Eugenol induces apoptosis and inhibits invasion and angiogenesis in a rat model of gastric carcinogenesis induced by MNNG. Life Sciences 86, 936-941. http://dx.doi.org/10.1016/j.lfs.2010.04.010
Nambiar DK, Kujur PK, Singh RP. 2016. Angiogenesis Assays. In: Strano S, Ed. Cancer Chemoprevention. Methods in Molecular Biology, Vol. 1379. New York, NY: Humana Press, 107-115. http://dx.doi.org/10.1007/978-1-4939-3191-0_10
Penn J, Ed. 2008. Retinal and choroidal angiogenesis. Berlin, DE: Springer Science & Business Media.
Prakash P, Gupta N. 2005. Therapeutic uses of Ocimum sanctum L. (Tulsi) with a note on eugenol and its pharmacological actions: a short review. Indian Journal of Physiology and Pharmacology 49,125.
Raga DD, Herrera AA, Dinah Espineli SC, Ragasa CY. 2013. Triterpenes from Ardisia squamulosa C. Presl (Myrsinaceae) limit angiogenesis and the expression of Von Willebrand factor in duck chorioallantoic membrane. Journal of Chemical and Pharmaceutical Research 5, 230-239.
Ragasa CY, Espineli DL, Agoo E, Del Fierro RS, Don MJ, Shen CC. 2013.Chemical constituents of Cinnamomum cebuense. Chinese Journal Natural Medicines 11, 264-268. http://dx.doi.org/10.1016/S1875-5364(13)60026-6.
Ravindran PN, Nirmal-Babu K, Shylaja M, Eds. 2004. Cinnamon and cassia: the genus Cinnamomum. Boca Raton, FL: CRC Press.
Ribatti D, Crivellato E. 2012. “Sprouting angiogenesis”, a reappraisal. Developmental Biology 372, 157-165. http://dx.doi.org/10.1016/j.ydbio.2012.09.018
Sagar SM, Yance D, Wong RK. 2006. Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer—Part 1. Current Oncology 13, 14.
Tahergorabi Z, Khazaei M. 2012. A review on angiogenesis and its assays. Iranian Journal of Basic Medical Sciences 15, 1110. http://dx.doi.org/10.22038/IJBMS.2012.4929
Thanekar D, Dhodi J, Gawali N, Raju A, Deshpande P, Degani M, Juvekar A. 2016. Evaluation of antitumor and anti-angiogenic activity of bioactive compounds from Cinnamomum tamala: In vitro, in vivo and in silico approach. South African Journal of Botany 104, 6-14. https://doi.org/10.1016/j.sajb.2015.09.014
Vickers A, Zollman C, Lee R. 2001. Herbal medicine. Western Journal of Medicine 175, 125. http://dx.doi.org/10.1136/ewjm.175.2.125
Vijayan KK, Thampuran RA. 2004. Pharmacology and Toxicology of Cinnamon and Cassia. Cinnamon and cassia: the genus Cinnamomum. In: Ravindran PN, Nirmal-Babu K, Shylaja M, Eds. Cinnamon and cassia: the genus Cinnamomum. Boca Raton, FL: CRC press, 259-284.
Vitor CE, Figueiredo CP, Hara DB, Bento AF, Mazzuco TL, Calixto JB. 2009. Therapeutic action and underlying mechanisms of a combination of two pentacyclic triterpenes, α‐and β‐amyrin, in a mouse model of colitis. British Journal of Pharmacology 157, 1034-1044. http://dx.doi.org/10.1111/j.1476-5381.2009.00271.x
Výboh P, Zeman M, Bilčík B, Šárniková B, Košťál Ľ. 2010.Angiogenic effect of leptin in the quail chorioallantoic membrane. Acta Veterinaria Brno 79, 13-17. http://dx.doi.org/10.2754/avb201079010013
West DC, Hampson IN, Arnold F, Kumar S. 1985. Angiogenesis induced by degradation products of hyaluronic acid. Science 228, 1324-1326. http://dx.doi.org/10.1126/science.2408340
Zhang H, Burggren WW. 2012. Hypoxic level and duration differentially affect embryonic organ system development of the chicken (Gallus gallus). Poultry Science 91, 3191-3201. http://dx.doi.org/10.3382/ps.2012-02449
Michael Ryan G. Alimpoos, Jholvenjey N. Baguio, Genette Chile D. Bilbao, Leizel Cañada, Koleen Enerio, Nova Mae Jocom, Khey Lord Mantubig, Stephen V. Sabal, Mary Louise Tan, Shiela Mae A. Ursal, Jay P. Picardal (2018), Antiangiogenic and morphological effects of Cinnamomum cebuense Kosterm. leaf extracts on Anas platyrynchos L. embryonic development usingan in vivo chorioallantoic membrane (CAM) assay; IJB, V13, N1, July, P337-347
https://innspub.net/antiangiogenic-and-morphological-effects-of-cinnamomum-cebuense-kosterm-leaf-extracts-on-anas-platyrynchos-l-embryonic-development-usingan-in-vivo-chorioallantoic-membrane-cam-assay/
Copyright © 2018
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0