Assessment of environmental flow using morphological characteristics of river (case study: Karoon River, Iran)

Paper Details

Research Paper 01/04/2015
Views (612)
current_issue_feature_image
publication_file

Assessment of environmental flow using morphological characteristics of river (case study: Karoon River, Iran)

Mehdi Fuladipanah, Elham Sangi
J. Biodiv. & Environ. Sci. 6(4), 303-310, April 2015.
Copyright Statement: Copyright 2015; The Author(s).
License: CC BY-NC 4.0

Abstract

The relationship between wetted perimeter and discharge is sometimes used as an expedient technique for determining the minimum flow allowable for environmental purposes. The critical minimum discharge is supposed to correspond to the point where there is a break in the shape of the curve (usually a logarithmic or power function). Below this discharge, wetted perimeter declines rapidly. The appearance of a break in the shape of the curve is strongly dependent on the relative scaling of the axes of the graph. This subjectivity can be overcome by defining the break in shape using mathematical techniques. The important break in the shape of the curve can be systematically defined by the point where the slope equals 1, or where the curvature is maximized. These two methods were applied to Karoon River, Iran. Seven cross section were selected. Their survey data were used to derivate relationship between wetted perimeter and discharge. After determining breakpoints on the curves, corresponding value of discharge was calculated from the curves. Analysis of results showed that the slope method has reasonable and accurate output. Finally, the amount of environmental flow for Karoon river was calculated as 209.4 cms.

Alves MH. 1994. Proceeding da A´ gua:VII Silubesa, 3, 501.

Annear TC, Conder AL. 1984. Journal of Fish Management 4, 531.

Cochnauer T. 1976. Symposium and Special Conference on Instream Flow Needs 2, 387.

Collings MR. 1974. Generalization of spawning and rearing discharges for several Pacific salmon species in western Washington, USGS Open File Report.

Filipek S, Keith WE, Giese J. 1987. Proc. Arkansas Acad. Sci. 41-43.

Gippel CJ, Stewardson MJ. 1998. Regulated Rivers: Research and Management 14(1), 53.

Gordon ND, McMahon TA, Finlayson BL. 1992. Stream  Hydrology:  An  Introduction  for  Ecologists. Wiley, Chichester.

King JM, Tharme RE, Brown CA. 1999. World Commission on Dams Thematic Report: definition and implementation of instream flows,Cape Town.

Marchand MD. 2006. Environmental Flow Requirements for Rivers: An integrated approach for river and coastal zone management, WL|Delft Hydraulics.

Nelson FA. 1980. Evaluation of four instream flow methods applied to four trout rivers in southwest Montana, Draft Report to US Fisheries and Wildlife Ser6ice. Montana Department of Fish Wildlife and Parks.

Nelson FA. 1980. Evaluation of four instream flow methods applied to four trout rivers in southwest Montana’, Montana Department of Fish Wildlife and Parks.

Prewitt CG, Carlson CA. 1977. Evaluation of four instream flow methodologies used on the Yampa and White Rivers, Colorado’, eport to U Fisheries and Wildlife Ser6ice, Colorado State University.

Richardson BA. 1986. Evaluation of instream flow methodologies for freshwater fish in New South Wales’, in Campbell, I.C. Ed. , Water tudies Centre, Chisholm Institute of Technology, Caulfield.

Smankthin VU, Eriyagama N. 2008. Developing a software package for global desktop assessment of environmental flows”. Environmental Modeling and Software 23(12), 1396-1406.

Stalnaker CB, Arnette JL. 1976. Methodologies for determining instream flows for fish and other aquatic life, Utah State University, Logan.

Tennant DL. 1976. Symposium and Special Conference on Instream Flow Needs 2, 359.

Tharme RE. 1996. Review of international methodologies for the quantification of the instream flow requirements of rivers. Freshwater Research Unit, University of Cape Town. Yin XA, Yang ZF, 2012. Procedia Environmental Sciences 13, 2414.

Related Articles

Antioxidant and anti-inflammatory activity of Pleurotus citrinopileatus Singer and Pleurotus sajor-caju (Fr.) Singer

P. Maheswari, P. Madhanraj, V. Ambikapathy, P. Prakash, A. Panneerselvam, J. Biodiv. & Environ. Sci. 27(2), 90-96, August 2025.

Mangrove abundance, diversity, and productivity in effluent-rich estuarine portion of Butuanon River, Mandaue City, Cebu

John Michael B. Genterolizo, Miguelito A. Ruelan, Laarlyn N. Abalos, Kathleen Kay M. Buendia, J. Biodiv. & Environ. Sci. 27(2), 77-89, August 2025.

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.

Conservation and trade dynamics of non-timber forest products in local markets in south western Cameroon

Kato Samuel Namuene, Mojoko Fiona Mbella, Godswill Ntsomboh-Ntsefong, Eunice Waki, Hudjicarel Kiekeh, J. Biodiv. & Environ. Sci. 27(2), 58-69, August 2025.

Overemphasis on blue carbon leads to biodiversity loss: A case study on subsidence coastal wetlands in southwest Taiwan

Yih-Tsong Ueng, Feng-Jiau Lin, Ya-Wen Hsiao, Perng-Sheng Chen, Hsiao-Yun Chang, J. Biodiv. & Environ. Sci. 27(2), 46-57, August 2025.

An assessment of the current scenario of biodiversity in Ghana in the context of climate change

Patrick Aaniamenga Bowan, Francis Tuuli Gamuo Junior, J. Biodiv. & Environ. Sci. 27(2), 35-45, August 2025.

Entomofaunal diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivation systems within the cotton-growing zone of central Benin

Lionel Zadji, Roland Bocco, Mohamed Yaya, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, J. Biodiv. & Environ. Sci. 27(2), 21-34, August 2025.

Biogenic fabrication of biochar-functionalized iron oxide nanoparticles using Miscanthus sinensis for oxytetracycline removal and toxicological assessment

Meenakshi Sundaram Sharmila, Gurusamy, Annadurai, J. Biodiv. & Environ. Sci. 27(2), 10-20, August 2025.