Bioactive compounds assessment and antioxidant capacity of bitter orange

Paper Details

Research Paper 01/11/2018
Views (969)
current_issue_feature_image
publication_file

Bioactive compounds assessment and antioxidant capacity of bitter orange

Atif Akbar, Naqeeb Ullah, Muhammad Arif, Najma Shams, Khurram Kabir, Muhammad Tariq, Muhammad Ayub, Hameed Ur Rehman
Int. J. Biosci. 13(5), 293-300, November 2018.
Copyright Statement: Copyright 2018; The Author(s).
License: CC BY-NC 4.0

Abstract

Citrus is the more important fruit crop produced and used up from all over world. Citrus aurantium L is the member of citrus genus Rutaceae. Citrus bioactive compounds prevent from oxidative damage and these compounds also possess their activity by rendering the chain reaction and constraining the lipid oxidation for preventing the oxidation damage. Flavones chalcones, flavan-3,4-diol and flavan-3-ols are biosynthetic origin classes of flavonoids and also end product of biosynthesis. On the base of molecular structure they are categories into eight classes that contains catechin, chalcones, is flavones, flavanones, flavanols and dihydroflavonols. Means values titratable acidity for bitter orange varieties presented in table obtained for V3 depicted the highest value of titratable acidity 4.01% and followed by V2 % was 4.93% while lowest was found in V1 4.82. Total soluble solid probably represent the sugars and mainly used to check the maturity of fruit. Total soluble solids of bitter orange varieties was shown in Figure 4.7. Results show that V3 has higher Total soluble solids contents 9.1 as compared to V1 8.1 and V2 8.5.

Atawodi S, Atawodi J, Idakwo G, Pfundstein B, Haubner R, Wurtele G, Spiegelhalder B, Bartsch H, Owen R. 2009. Polyphenol composition and antioxidant potential of Hibiscus esculentus L. fruit cultivated in Nigeria. J. Med. Food 12(6), 1316-1320.

Atli G, Canli M. 2010. Response of antioxidant system of freshwater fish Oreochromis niloticus to acute and chronic metal (Cd, Cu, Cr, Zn, Fe) exposures. Ecotoxicology and Environmental Safety, 73(8), 1884-1889.

Bocco A, Cuvelier ME, Richard H, Berset C. 1998. Antioxidant activity and phenolic composition of citrus peel and seed extracts. J. Agri. Food Chem., 46(6), 2123-2129.

Bors W, Heller W, Michel C, Saran M. 1990. Flavonoids as antioxidants: Determination of radical-scavenging efficiencies. Methods in enzymology 186, 343-355.

Bombardelli E, Morazzoni P. 1993. The flavonoids: new perspectives in biological activities and therapeutics. Chimica oggi. 11(7-8), 25-28.

Braune A, Gütschow M, Engst W, Blaut M. 2001. Degradation of quercetin and luteolin by Eubacterium ramulus. Applied and Environmental Microbiology 67(12), 5558-5567.

Brand-Williams W, Cuvelier M, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Tech. 28(1), 25-30.

Bravo L. 1998. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews 56(11), 317-333.

Brune M, Rossander L, Hallberg L. 1989. Iron absorption and phenolic compounds: importance of different phenolic structures. Europ. J. clin. Nutri., 43(8), 547-557.

Burda S, Oleszek W. 2001. Antioxidant and antiradical activities of flavonoids. J. Agri. Food. Chem. 49(6), 2774-2779.

Calvarano M, Postorino E, Gionfriddo F, Calvarano I, Bovalo F, Calabró G. 1996. Naringin extraction from exhausted bergamot peels. Perfumer and flavorist 21(5), 1-4.

Calabro P, Samudio I, Willerson J, Yeh T. 2004. Resisting promotes smooth muscle cell proliferation through activation of extracellular signal–regulated kinase 1/2 and phosphatidylinositol 3-kinase pathways. Circulation 110(21), 3335-3340.

Cao G, Sofic E, Prior RL. 1996. Antioxidant capacity of tea and common vegetables. J. Agri. Food. Chem. 44(11), 3426-3431.

Cook N, Samman S. 1996. Flavonoids chemistry, metabolism, cardio protective effects, and dietary sources. J. Nutri. Biochem 7(2), 66-76.

Cushnie TT, Lamb AJ. 2005. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents., 26(5), 343-356.

Related Articles

Medicinal plants sold in Daloa markets: Traditional knowledge and Public health issues

Kouakou Yao Bertin, Kouakou Assoman Serge Alain, Kouame Yao Anicet Gervais, Malan Djah François, Bakayoko Adama, Int. J. Biosci. 27(2), 200-210, August 2025.

Agronomic performance and profitability of coffee wildlings using different soil media mixtures

Maribel L. Fernandez, Ricardo B. Casauay, Ronel A. Collado, Int. J. Biosci. 27(2), 189-199, August 2025.

Implications of aberrant glycosylation on age-related disease progression

Tahmid Ahmad Patwary, Mukramur Rahman, Md. Nafis Fuad Prottoy, Sayad Md. Didarul Alam, Int. J. Biosci. 27(2), 176-188, August 2025.

Design and development of solar powered water sprayer: A green technology innovation

Lorenzo V. Sugod, Int. J. Biosci. 27(2), 159-175, August 2025.

Knowledge, attitudes, practices, and social awareness regarding SARS-CoV-2 infection in the kyrgyz population in the post-pandemic period

Mirza Masroor Ali Beg, Haider Ali, Yahya Nur Ahmed, Yavuz Gunduz, Hafsa Develi, Tilekeeva UM, Int. J. Biosci. 27(2), 151-158, August 2025.

Tumor suppressing ability of myrtenal in DMBA-induced rat mammary cancer: A biochemical and histopathological evaluation

Manoharan Pethanasamy, Shanmugam M. Sivasankaran, Saravanan Surya, Raju Kowsalya, Int. J. Biosci. 27(2), 141-150, August 2025.

Assessing tree diversity in cashew plantations: Environmental and agronomic determinants in buffer zones of Mont Sangbé National Park, western Côte d’Ivoire

Kouamé Christophe Koffi, Kouakou Hilaire Bohoussou, Serge Cherry Piba, Naomie Ouffoue, Sylvestre Gagbe, Alex Beda, Adama Tondossama, Int. J. Biosci. 27(2), 122-133, August 2025.