Characteristics of symbiotic relationships between plants and bacteria and the influence of stress factors on them
Paper Details
Characteristics of symbiotic relationships between plants and bacteria and the influence of stress factors on them
Abstract
Symbiotic relationships between plants and bacteria play a fundamental role in ecosystem functioning and sustainable agriculture. Based on extensive literature analysis, this review examines the formation, development, and functioning of plant–bacterial symbioses, with particular emphasis on nitrogen-fixing interactions between legumes and rhizobia. The symbiotic process is described as a complex, multi-stage system regulated by coordinated molecular, physiological, and genetic mechanisms of both partners. Special attention is given to the influence of abiotic and biotic stress factors—such as temperature extremes, drought, heavy metals, and nutrient imbalance—on the establishment and efficiency of symbiosis. While higher plants are generally more sensitive to stress conditions, beneficial microorganisms can mitigate negative effects by enhancing nutrient uptake, physiological stability, and stress tolerance. The review highlights that stress factors often reduce symbiotic efficiency, but targeted use of plant-associated microorganisms offers promising strategies to improve crop productivity and ecological sustainability. Understanding these interactions is essential for developing environmentally friendly agricultural practices and reducing dependence on chemical fertilizers.
Abd-Alla MH, Al-Amri SM, El-Enany A-WE. 2023. Enhancing Rhizobium–legume symbiosis and reducing nitrogen fertilizer use are potential options for mitigating climate change. Agriculture 13(11), 2092.
Abd-Alla MH, Issa AA, Ohyama T. 2014. Impact of harsh environmental conditions on nodule formation and dinitrogen fixation of legumes. In: Advances in Biology and Ecology of Nitrogen Fixation, 1–23.
Ali S, Mir RA, Haque MA, Danishuddin, Almalki MA, Alfredan M, Khalifa A, Mahmoudi H, Shahid M, Tyagi A, Mir ZA. 2025. Exploring physiological and molecular dynamics of drought stress responses in plants: challenges and future directions. Frontiers in Plant Science 16, 1565635.
Bovin AD, Dolgikh AV, Dymo AM, Kantsurova ES, Pavlova OA, Dolgikh EA. 2024. Genetically modified legume plants as a basis for studying the signal regulation of symbiosis with nodule bacteria. Horticulturae 10(1), 9.
Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, Morsy M, Eisen JA, Leach JE, Dangl JL. 2017. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biology 15(3), e2001793.
Chen L, Liu Y. 2024. The function of root exudates in the root colonization by beneficial soil rhizobacteria. Biology 13(2), 95.
Compant S, Samad A, Faist H, Sessitsch A. 2019. A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. Journal of Advanced Research 19, 29–37.
Elumalai P, Gao X, Parthipan P, Luo J, Cui J. 2025. Agrochemical pollution: A serious threat to environmental health. Current Opinion in Environmental Science and Health 43, 100597.
Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. 2009. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development 29, 185–212.
Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis S, Sheppard LJ, Jenkins A, Grizzetti B, Galloway JN, Vitousek P, Leach A, Bouwman AF, Butterbach-Bahl K, Dentener F, Stevenson D, Amann M, Voss M. 2013. The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences 368(1621), 20130164.
Gage DJ. 2004. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia. Microbiology and Molecular Biology Reviews 68, 280–300.
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA. 2008. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 320(5878), 889–892.
Glick BR. 2014. Bacteria with ACC deaminase promote plant growth. Microbiological Research 169, 30–39.
Gourion B, Berrabah F, Ratet P, Stacey G. 2015. Rhizobium–legume symbioses: the crucial role of plant immunity. Trends in Plant Science 20, 186–194.
Grzyb A, Wolna-Maruwka A, Niewiadomska A. 2021. Microbial transformation of nitrogen compounds. Agronomy 11(7), 1415.
Habteweld A, Kantor M, Kantor C, Handoo Z. 2024. Root-knot nematode–plant interactions. Frontiers in Plant Science 15, 1377453.
Hassani MA, Durán P, Hacquard S. 2018. Microbial interactions within the plant holobiont. Microbiome 6, 58.
Hirsch AM, Lum MR, Downie JA. 2001. What makes the rhizobia–legume symbiosis so special? Plant Physiology 127, 1484–1492.
Hnini M, Rabeh K, Oubohssaine M. 2025. Plant–microorganism interactions. AIMS Microbiology 11(4), 1035–1078.
Ho Y-N, Mathew DC, Huang C-C. 2017. Plant–microbe ecology. InTech.
Hungria M, Vargas MAT. 2000. Environmental factors affecting N₂ fixation. Field Crops Research 65, 151–164.
Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC. 2007. How rhizobial symbionts invade plants. Nature Reviews Microbiology 5, 619–633.
Kebede E. 2021. Legume-driven biological nitrogen fixation. Frontiers in Sustainable Food Systems 5, 767998.
Kidaj D, Zamlynska K, Swatek A, Komaniecka I. 2024. Influence of Nod factors on flavonoids. Molecules 29(19), 4546.
Ladha JK, Peoples MB, Reddy PM, Biswas JC, Bennett A, Jat ML, Krupnik TJ. 2022. Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems. Field Crops Research 283, 108541.
Lepetit M, Brouquisse R. 2023. Control of rhizobium–legume symbiosis. Frontiers in Plant Science 14, 1114840.
Lindström K, Mousavi SA. 2020. Effectiveness of nitrogen fixation in rhizobia. Microbial Biotechnology 13(5), 1314–1335.
Liu C-W, Murray JD. 2016. Flavonoids in nodulation. Plants 5(3), 33.
Lugtenberg B, Kamilova F. 2009. Plant-growth-promoting rhizobacteria. Annual Review of Microbiology 63, 541–556.
Mohamed HI, Ullah I, Toor MD, Tanveer NA, Ud Din MM, Basit A, Sultan Y, Muhammad M, Ur Rehman M. 2025. Heavy metals toxicity in plants: understanding mechanisms and developing coping strategies for remediation: A review. Bioresources and Bioprocessing 12, 95.
Nuc K, Olejnik P. 2025. Molecular mechanisms of root nodule formation. Agronomy 15(7), 1552.
Oldroyd GED, Downie JA. 2006. Calcium signalling in symbiosis. Current Opinion in Plant Biology 9, 351–357.
Oldroyd GED, Downie JA. 2008. Coordinating nodule morphogenesis. Annual Review of Plant Biology 59, 519–546.
Oldroyd GED. 2013. Signalling systems in symbiosis. Nature Reviews Microbiology 11, 252–263.
Ott T, van Dongen JT, Günther C, Krusell L, Desbrosses G, Vigeolas H, Bock V, Czechowski T, Geigenberger P, Udvardi MK. 2005. Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Current Biology 15(6), 531–535.
Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M. 2017. Abiotic and biotic stress impacts. Frontiers in Plant Science 8, 537.
Pishik VN, Vorobyev NI, Provoron NA, Komyakov YV. 2016. Adaptation to heavy metals. Microbiology 85(3), 231–247.
Rockström J, Williams J, Daily G, Noble A, Matthews N, Gordon L, Wetterstrand H, DeClerck F, Shah M, Steduto P, de Fraiture C, Hatibu N, Unver O, Bird J, Sibanda L, Smith J. 2017. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46(1), 4–17.
Santoyo G. 2025. Advances in the plant microbiome. Microorganisms 13(11), 2581.
Stacey G, McAlvin CB, Kim SY, Olivares J, Soto MJ. 2006. Salicylic acid and nodulation. Plant Physiology 141, 1473–1481.
Threatt SD, Rees DC. 2023. Nitrogenase systems. FEBS Letters 597(1), 45–58.
Tikhonovich IA, Provorov NA. 2009. Symbioses of plants and microorganisms. Saint Petersburg State University Press.
Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S. 2002. Agricultural sustainability. Nature 418, 671–677.
Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. 2020. Plant–microbiome interactions. Nature Reviews Microbiology 18, 607–621.
Tsyganova AV, Brewin NJ, Tsyganov VE. 2021. Symbiotic interface structure. Cells 10(5), 1050.
Udvardi M, Poole PS. 2013. Transport and metabolism in symbiosis. Annual Review of Plant Biology 64, 781–805.
Vessey JK. 2003. PGPR as biofertilizers. Plant and Soil 255, 571–586.
Wais RJ, Keating DH, Long SR. 2002. Nod factor-induced calcium spiking. Plant Physiology 129, 211–224.
Warmack RA, Rees DC. 2023. Nitrogenase structure. Molecules 28(24), 7952.
Yang J, Kloepper JW, Ryu C-M. 2009. Rhizobacteria and abiotic stress. Trends in Plant Science 14, 1–4.
Yang S, Wang S, Chen H, Gong Y, Lu C, Xu M, Ning K, Xu P. 2025. The lectin-rhizobium interactions underlying symbiotic nodulation: a focal review on vegetable legumes. Vegetable Research 5, e036.
Yeremko L, Czopek K, Staniak M, Marenych M, Hanhur V. 2025. Environmental factors in legume–rhizobium symbiosis. Biomolecules 15(1), 118.
Zahran HH. 1999. Rhizobium–legume symbiosis under stress. Microbiology and Molecular Biology Reviews 63, 968–989.
Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, Shen Y. 2015. Managing nitrogen for sustainable development. Nature 528(7580), 51–59.
Konul F. Bakhshaliyeva, Navai D. İmamquliyev, Mehpara İ. Gasımova, Sevda M. Muradova, Panah Z. Muradov*, 2026. Characteristics of symbiotic relationships between plants and bacteria and the influence of stress factors on them. Int. J. Biosci., 28(2), 75-90.
Copyright © 2026 by the Authors. This article is an open access article and distributed under the terms and conditions of the Creative Commons Attribution 4.0 (CC BY 4.0) license.


