Development and validation of portable electronic sensor to detect the soil moisture for geotechnical investigations

Paper Details

Research Paper 01/10/2018
Views (748)
current_issue_feature_image
publication_file

Development and validation of portable electronic sensor to detect the soil moisture for geotechnical investigations

Mian Sohail Akram, Kamran Mirza, Asim Iqbal, Muhammad Zeeshan
J. Biodiv. & Environ. Sci. 13(4), 63-72, October 2018.
Copyright Statement: Copyright 2018; The Author(s).
License: CC BY-NC 4.0

Abstract

The aim of this study is to develop and validate the Portable Electronic Instant Soil Moisture Sensor for the measurement of soil moisture, which is a basic step towards the soil characterization and used frequently as part of geotechnical investigations. In laboratory, soil moisture is determined by the oven-dry method and in the field generally by speedy moisture tester. The development of Portable Electronic Instant Soil Moisture Sensor is motivated to find soil moisture instantly without using any chemicals or split arrangements in the laboratory as well as in the field. The basic methodology and principle behind the moisture determination with this sensor is the application of electrical capacitance. The moisture content of 1200 soil samples from a north-east region of Pakistan (Lahore, Punjab) were determined by Portable Electronic Instant Soil Moisture Sensor and correspondingly laboratory Oven Dry Method results according to the standard American Society for Testing Materials to validate the sensor by comparison of results conducted by both methods. The comparison was made on various soil types and varying degree of moisture salinity.  The results show that it has the accuracy level up to ± 2.5% to 3.0% as compared with the conducted results of Oven Dry Method, and it may be used with confidence in the field and laboratory for instant moisture determination.

Adachi K. 2003. Making Salt Water (Saline) Solutions. Website accessed 24th August, 2014. http://educateyourself.org/dc/saltwatersolutions.shtml,

Akram S, Iqbal A. 2017. Development of Portable Instant Soil Moisture Content Sensor.  International In: Conference for New Challenges in Geo-technical Engineering (ICNCGE), FAST-NUCES Lahore Pakistan.

ASTM D. 2216. 2010. Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock Mass. Annual book of ASTM standards, West Conshohocken.

ASTM D. 4944-11. Standard Test Method for Field Determination of Water (Moisture) Content of Soil by the Calcium Carbide Gas Pressure Tester. West Conshohocken.

Atkins RT, Pangburn T, Bates RE, Brockett BE. 1998. Soil Moisture Determinations Using Capacitance Probe Methodology. Special Report 98-2, US Army Corps of Engineers.

Baumhardt RL, Lascano RJ, Evett SR. 2000. Soil Material, Temperature, and Salinity Effects on Calibration of Multisensor Capacitance Probes. Soil Science Society of America Journal 64, 1940–1946.

Hignett C, Evett S. 2008. Direct and Surrogate Measures of Soil Water Content. International Atomic Energy Agency, Vienna, Austria, p. 107-109.

Iqbal A. 2015. Development and validation of portable electronic instant soil moisture sensor (PEISMS). M.phil Thesis, Institute of Geology, University of the Punjab, Lahore, Pakistan.

Ravi S, D’odorico P, Over TM, Zobeck TM. 2004. On the effect of air humidity on soil susceptibility to wind erosion: The case of air-dry soils. Geophysical Research Letters 31. “H400 Soil Moisture Sensor Probes,” (2008).

Related Articles

Bacteriological analysis of selected fishes sold in wet markets in Tuguegarao city, Cagayan, Philippines

Lara Melissa G. Luis, Jay Andrea Vea D. Israel, Dorina D. Sabatin, Gina M. Zamora, Julius T. Capili, J. Biodiv. & Environ. Sci. 27(2), 1-9, August 2025.

Effect of different substrates on the domestication of Saba comorensis (Bojer) Pichon (Apocynaceae), a spontaneous plant used in agroforestry system

Claude Bernard Aké*1, Bi Irié Honoré Ta2, Adjo Annie Yvette Assalé1, Yao Sadaiou Sabas Barima1, J. Biodiv. & Environ. Sci. 27(1), 90-96, July 2025.

Determinants of tree resource consumption around Mont Sangbé national park in western Côte d’Ivoire

Kouamé Christophe Koffi, Serge Cherry Piba, Kouakou Hilaire Bohoussou, Naomie Ouffoue, Alex Beda, J. Biodiv. & Environ. Sci. 27(1), 71-81, July 2025.

Fishing ground and seasonal availability of diamondback squid (Thysanoteuthis rhombus) along southern Tañon Strait: Local fishermen’s insights

Robinson S. Amihan Jr., Hannah Abigail R. Daita, J. Biodiv. & Environ. Sci. 27(1), 61-70, July 2025.

Characteristics of the mycobiota of cultivated plants grown in the Kur-Araz valley according to ecolo-trophic relationships

Anakhanum Yusifova, Sanubar Aslanova, Basti Asadova, Irada Mammadova, Aytan Safarova, J. Biodiv. & Environ. Sci. 27(1), 55-60, July 2025.

Screening of an medicinal plant Crinum asiaticum L. bulb extracts for their proximate composition, phytochemical analysis and antioxidant activity

K. Gowthaman, P. Prakash, V. Ambikapathy, S. Babu, A. Panneerselvam, J. Biodiv. & Environ. Sci. 27(1), 41-54, July 2025.

Immunomodulatory effect of Panchagavya and Lactobacillus probiotics on Oreochromis mossambicus (W. K. H. Peters)

R. Keerthiga, M. Kannahi, J. Biodiv. & Environ. Sci. 27(1), 30-40, July 2025.