Effect of natural and artificial sweeteners on the hemolymph glucose level (HGL) in Drosophila melanogaster
Paper Details
Effect of natural and artificial sweeteners on the hemolymph glucose level (HGL) in Drosophila melanogaster
Abstract
Natural sweeteners are used by consumers to enhance the flavor of food while artificial sweeteners were developed for the same purpose with the added benefit of minimizing the risk of hyperglycemia. Fasting HGL (hemolymph glucose level) of Drosophila melanogaster were measured and followed a normal curve distribution. Female flies fasted for 8 hours were fed with reagent-grade and consumer-grade sweeteners and their hemolymph was collected after 1 hour for glucose determination. There was no significant difference in HGL between fasted flies and the flies fed with artificial sweeteners (aspartame, acesulfame-K, saccharin, and sucralose). Flies fed with natural sweeteners increased their HGL in the following order: white sugar > light brown sugar > dark brown sugar > muscovado sugar > coconut sugar > stevia = fasting level. Except for stevia, all the tested natural sweeteners significantly increased HGL compared to fasting HGL (P < 0.05). Our study shows that among the natural sweeteners, coconut- and stevia-derived sweeteners, along with muscovado sugar, do not increase HGL as much as the white and brown varieties of cane sugars in D. melanogaster. This is the first report to test the effects of an extensive list of sweeteners on circulating glucose levels in a single experimental organism, unlike previous reports. Our findings reveal the suitability of natural sweeteners stevia, coconut sugar, and muscovado sugar as healthier substitutes for white sugar, and may be beneficial for individuals on low calorie diets or those with, or at risk of, hyperglycemia or diabetes mellitus.
American Academy of Pediatric Dentistry. 2014. Guideline on caries-risk assessment and management for infants, children, and adolescents. Clinical Guidelines, Reference Manual. American Academy of Pediatric Dentistry, 127-134, Chicago, IL, USA.
American Diabetes Association. 2011. Standard of Medical Care in Diabetes. Diabetes Care 34(suppl 1), S11-S61. http://dx.doi.org/10.2337/dc11-S011
Anton SD, Martin CK, Han H, Coulon S, Cefalu WT, Geiselman P, Williamson DA. 2010. Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels. Appetite 55(1), 37-43. http://dx.doi.org/10.1016/j.appet.2010.03.009
Araújo JR, Martel F, Keating E. 2014. Exposure to non-nutritive sweeteners during pregnancy and lactation: Impact in programming of metabolic diseases in the progeny later in life. Reproductive Toxicology 49, 196-201. http://dx.doi.org/10.1016/j.reprotox.2014.09.007
Baker KD, Thummel CS. 2007. Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila. Cell Metabolism 6, 257–266. http://dx.doi.org/10.1016/j.cmet.2007.09.002
Baroña ML. 2003. The promise of muscovado. Philippine Star. http://www.philstar.com/starweek-magazine/211154/promise-muscovado.
Barriocanal LA, Palacios M, Benitez G, Benitez S, Jimenez JT, Jimenez N, Rojas V. 2008. Apparent lack of pharmacological effect of steviol glycosides used as sweeteners in humans. A pilot study of repeated exposures in some normotensive and hypotensive individuals and in Type 1 and Type 2 diabetics. Regulatory Toxicology and Pharmacology 51(1), 37-41. http://dx.doi.org/10.1016/j.yrtph.2008.02.006
Bettelheim F, Brown W, Campbell M, Farrell S. 2010. Nutrition, In: Introduction to organic and Biochemistry, p. 526. Brooks/Cole. CA. Bharucha KN, Tarr P, Zipursky SL. 2008. A glucagon-like endocrine pathway in Drosophila modulates both lipid and carbohydrate homeostasis. Journal of Experimental Biology 211(19), 3103-3110. http://dx.doi.org/10.1242/ jeb.016451
Bharucha KN. 2009. The epicurean fly: Using Drosophila melanogaster to study metabolism. Pediatric Research 65, 132–137. http://dx.doi.org/10.1203/PDR.0b013e318191fc68
Brandle JE, Starratt AN, Gijzen M. 1998. Stevia rebaudiana: Its agricultural, biological, and chemical properties. Canadian Journal of Plant Science 78, 527–536. http://dx.doi.org/10.4141/P97-114
Broughton SJ, Piper MD, Ikeya T, Bass TM, Jacobson J, Driege Y, Martinez P, Hafen E, Withers DJ, Leevers SJ, Partridge L. 2005. Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands, Proceedings of the National Academy of Sciences of the United States of America 102(8), 3105-10. http://dx.doi.org/10.1073/pnas.0405775102
Broughton S, Alic N, Slack C, Bass T, Ikeya T, Vinti G, Tommasi AM, Driege Y, Hafen E, Partridge L. 2008. Reduction of DILP2 in Drosophila triages a metabolic phenotype from lifespan revealing redundancy and compensation among DILPs. PLOS ONE 3(11), e3721. http://dx.doi.org/10.1371/journal.pone.0003721
Brunzell JD. 1978. Use of fructose, xylitol, or sorbitol as a sweetener in diabetes mellitus, Diabetes Care 1(4), 223-30. http://dx.doi.org/10.2337/diacare.1.4.223
Ceddia R, Bikopoulos G, Hilliker A, Sweeney G. 2003. Insulin stimulates glucose metabolism via the pentose phosphate pathway in Drosophila Kc cells. Federation of European Biochemical Societies Letters 555, 307-310. http://dx.doi.org/10.1016/S0014-5793(03)01261-4
Chandramouli V, Kumaran K, Ekberg K, Wahren J, Landau BR. 1993. Quantitation of the pathways followed in the conversion of fructose to glucose in liver. Metabolism 42(11), 1420-3. http://dx.doi.org/10.1016/0026-0495(93)90192-Q
Cole SW. 1939. Sugar, white and brown. British Medical Journal 2(4101), 340. http://dx.doi.org/10.1136/bmj.2.4101.340
Commerford SR, Bizeau ME, McRae H, Jampolis A, Thresher JS, Pagliassotti MJ. 2001. Hyperglycemia compensates for diet-induced insulin resistance in liver and skeletal muscle of rats. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology 281(5), R1380-9.
DiNicolantonio JJ, Lucan SC. 2014. The wrong white crystals: not salt but sugar as aetiological in hypertension and cardiometabolic disease. Open Heart 1, e000167. http://dx.doi.org/10.1136/openhrt-2014-000167
Fitch C, Keim KS. 2012. Position of the Academy of Nutrition and Dietetics: Use of nutritive and nonnutritive sweeteners. Journal of the Academy of Nutrition and Dietetics 112(5), 739-758. http://dx.doi.org/10.1016/j.jand.2012.03.009
Flowers JM, Sezgin E, Kumagai S, Duvernell DD, Matzkin LM, Schmidt PS, Eanes WF. 2007. Adaptive evolution of metabolic pathways in Drosophila. Molecular Biology and Evolution 24(6), 1347-54. http://dx.doi.org/10.1093/molbev/msm057
Gregersena S, Jeppesena PB, Holstb JJ, Hermansena K. 2004. Antihyperglycemic effects of stevioside in type 2 diabetic subjects. Metabolism 53(1), 73-6. http://dx.doi.org/10.1016/j.metabol.2003.07.013
Haselton A, Sharmin E, Schrader J, Sah M, Poon P, Fridell YWC. 2010. Partial ablation of adult Drosophila insulin-producing neurons modulates glucose homeostasis and extends life span without insulin resistance. Cell Cycle 9(15), 3063-3071. http://dx.doi.org/10.4161/cc.9.15.12458.
Hayes C. 2001. The effect of non-cariogenic sweeteners on the prevention of dental caries: A review of the evidence. Journal of Dental Education 65(10), 1106-1109.
Hellfritsch C, Brockhoff A, Stähler F, Meyerhof W, Hofmann T. 2012. Human psychometric and taste receptor responses to steviol glycosides. Journal of Agricultural and Food Chemistry 60(27), 6782–6793. http://dx.doi.org/10.1021/jf301297n
Inglett GE. 1981. Sweeteners – A review. Food Technology. Mar-Apr 1981:37-38,40-41.
International Sugar Organization. 2012. Alternative sweeteners in a high sugar price environment. Alternative Sweeteners in a High Sugar Price Environment. MECAS (12)04. London, United Kingdom.
Jaffé WR. 2012. Health effects of non-centrifugal sugar (NCS): A review. Sugar Tech 14, 87-94. http://dx.doi.org/10.1007/s12355-012-0145-1
Knight GR. 2009. A house of honey: White sugar, brown sugar, and the taste for modernity in colonial and postcolonial Indonesia. Food and Foodways 17(4), 197-214. http://dx.doi.org/10.1080/07409710903356281
Lee BM. 1997. Effects of glucose, fructose, and sucrose on postprandial glucose and insulin responses. MS thesis, University of Toronto, Canada, p. 32-66.
Luque T, Hjelmqvist L, Marfany G, Danielsson O, El-Ahmad M, Persson B, Jörnvall H, González-Duarte R. 1998. Sorbitol dehydrogenase of Drosophila: Gene, protein, and expression data show a two-gene system. Journal of Biological Chemistry 273(51), 34293-301. http://dx.doi.org/10.1074/jbc.273.51.34293
Malik VS, Popkin BM, Bray GA, Després JP, Willett WC, Hu FB. 2010. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes. Diabetes Care 33(11), 2477-2483. http://dx.doi.org/10.2337/dc10-1079
Manohar EC. 2012. Coconut sap sugar industry roadmap. 1st National Coconut Sap Sugar Congress. Philippines. (Lecture).
Marzluf GA. 1969. Studies of trehalase and sucrase of Drosophila melanogaster. Archives of Biochemistry and Biophysics 134(1), 8-18. http://dx.doi.org/10.1016/0003-9861(69)90244-6
Miller PE, Perez V. 2014. Low-calorie sweeteners and body weight and composition: A meta-analysis of randomized controlled trials and prospective cohort studies. American Journal of Clinical Nutrition 100, 765–77. http://dx.doi.org/10.3945/ajcn.113.082826
Morenga LAT, Mallard S. 2012. Dietary sugars and body weight: systematic review and meta-analyses of randomised controlled trials and cohort studies. British Medical Journal 345, e7492. http://dx.doi.org/10.1136/bmj.e7492
Morenga LAT, Howatson AJ, Jones RM, Mann J. 2014. Dietary sugars and cardiometabolic risk:systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids. American Journal of Clinical Nutrition 100(1), 65-79. http://dx.doi.org/10.3945/ajcn.113.081521
Musselman LP, Fink J, Narzinski K, Ramachandran PV, Hathiramani SS, Cagan R, Baranski T. 2011. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Disease Models and Mechanisms 4, 842-849. http://dx.doi.org/10.1242/dmm.007948
Na J, Musselman LP, Pendse J, Baranski T, Bodmer R, Ocorr K, Cagan R. 2013. A Drosophila model of high sugar diet-induced cardiomyopathy. PLOS Genetics 9(1), e1003175. http://dx.doi.org/10.1371/journal.pgen.1003175
Natah SS, Hussien KR, Tuominen JA, Koivisto VA. 1997. Metabolic response to lactitol and xylitol in healthy men. American Journal of Clinical Nutrition 65(4), 947-950.
NPCS Board. 2012. In: Handbook on Agro Based Industries. 2nd ed. Niir Project Consultancy Services, New Delhi, India, p. 139.
Olmsted WH. 1953. The metabolism of mannitol and sorbitol; their use as sugar substitutes in diabetic therapy. Diabetes 2(2), 132-7. http://dx.doi.org/10.2337/diab.2.2.132
Purnomo H. 1992. Sugar components of coconut sugar in Indonesia. ASEAN Food Journal 7(4), 200-201.
Purnomo H. 2007. Volatile components of coconut fresh sap, sap syrup and coconut sugar. ASEAN Food Journal 14(1), 45-49.
Ranilla LG, Kwon YI, Genovese MI, Lajolo FM, Shetty K. 2008. Antidiabetes and antihypertension potential of commonly consumed carbohydrate sweeteners using in vitro models. Journal of Medicinal Food 11(2), 337–348. http://dx.doi.org/10.1089/jmf.2007.689
Rizzo B, Zambonin L, Angeloni C, Leoncini E, Dalla Sega FV, Prata C, Fiorentini D, Hrelia S. 2013. Steviol glycosides modulate glucose transport in different cell types. Oxidative Medicine and Cellular Longevity 2013, 348169. http://dx.doi.org/10.1155/2013/348169
Rovenko BM, Perkhulyn NV, Gospodaryov DV, Sanz A, Lushchak OV, Luschchak VI. 2015. High consumption of fructose rather than glucose promotes a diet-induced obese phenotype in Drosophila melanogaster. Comparative Biochemistry and Physiology Part A 180, 75–85. http://dx.doi.org/10.1016/j.cbpa.2014.11.008
Schernhammer ES, Bertrand KA, Birmann BM, Sampson L, Willett WC, Feskanich D. 2012. Consumption of artificial sweetener- and sugar-containing soda and risk of lymphoma and leukemia in men and women. American Journal of Clinical Nutrition 96(6), 1419–1428. http://dx.doi.org/10.3945/ajcn.111.030833
Schiffman SS, Rother KI. 2013. Sucralose, a synthetic organochlorine sweetener: Overview of biological issues. Journal of Toxicology and Environmental Health Part B 16, 399–451. http://dx.doi.org/10.1080/10937404.2013.842523
Swithers SE. 2013. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements. Trends in Endocrinology and Metabolism 24(9), 431–441. http://dx.doi.org/10.1016/j.tem.2013.05.005
Trinidad TP, Malillin AC, Sagum RS, Encabo RR. 2010. Glycemic index of commonly consumed carbohydrate foods in the Philippines. Journal of Functional Foods. 2(4), 271-274. http://dx.doi.org/10.1016/j.jff.2010.10.002
Wolever TM. 1998. Effect of glucose, sucrose and fructose on plasma glucose and insulin responses in normal humans:comparison with white bread. European Journal of Clinical Nutrition 52(12), 924-8. http://dx.doi.org/10.1038/sj.ejcn.1600666
Xie HB, Cammarato A, Rajasekaran NS, Zhang H, Suggs JA, Lin HC, Bernstein SI, Benjamin IJ, Golic KG. 2013. The NADPH metabolic network regulates human αB-crystallin cardiomyopathy and reductive stress in Drosophila melanogaster. PLOS Genetics 9(6), e1003544. http://dx.doi.org/10.1371/journal.pgen.1003544
Yılmaz S, Uçar A. 2014. Epidemiological studies reveal mild association of long-term consumption with certain cancers. A review of the genotoxic and carcinogenic effects of aspartame: does it safe or not? Cytotechnology 66(6), 875-881.
Zhang H, Liu J, Li CR, Momen B, Kohanski RA, Pick L. 2009. Deletion of Drosophila insulin-like peptide causes growth defects and metabolic abnormalities. Proceedings of the National Academy of Sciences of the United States of America 106(46), 19617-19622. http://dx.doi.org/10.1073/pnas.0905083106
Zumbe A, Lee A, Storey D. 2001. Polyols in confectionery: the route to sugar-free, reduced sugar and reduced calorie confectionery. British Journal of Nutrition 85, S31–S45. http://dx.doi.org/10.1079/BJN2000260
Paul Mark B. Medina, Jovynel S. Cabaccan, Joannes Luke B. Asis (2015), Effect of natural and artificial sweeteners on the hemolymph glucose level (HGL) in Drosophila melanogaster; IJB, V7, N1, July, P119-131
https://innspub.net/effect-of-natural-and-artificial-sweeteners-on-the-hemolymph-glucose-level-hgl-in-drosophila-melanogaster/
Copyright © 2015
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0