Effects of low temperatures on the anti-oxidants activity of root in sensitive and tolerant genotypes of Barley (Hordeum vulgare L.)

Paper Details

Research Paper 01/10/2017
Views (304) Download (9)
current_issue_feature_image
publication_file

Effects of low temperatures on the anti-oxidants activity of root in sensitive and tolerant genotypes of Barley (Hordeum vulgare L.)

Mahta Mohamadiaza, Mahmoud Toorchi, Mohammad Moghadamvahed
J. Bio. Env. Sci.11( 4), 54-64, October 2017.
Certificate: JBES 2017 [Generate Certificate]

Abstract

Cold stress causes a disturbance in micro-organelles, transport of lipids in the plasma membrane, and production of reactive oxygen species (ROS) in plants, as well as growth and development prohibition, which subsequently, reduce yield and production. To investigate the effect of cold stress on the activity of anti-oxidants and the following damages in two sensitive (aths-38) and tolerant (EC83-1215) barley genotypes, a factorial experiment based on randomized complete block design with three replicates was conducted under controlled conditions. At seedling stage, the cold stress of 4°C was applied for 48 h. After sampling, the anti-oxidants enzymes involved in the defense mechanisms were analyzed in roots. The results indicated that stress has significantly increased the quantity of proline, hydrogen peroxide (H2O2), malondyaldehid (MDA) and catalase whereas cold stress was significantly reduced peroxidase (POX). Amount of H2O2 and POX was lower in the roots of sensitive than the tolerant genotypes. In contrast, catalase was synthesized more in sensitive plants than of the tolerant counterparts.

VIEWS 9

Abavisani A, Khorshidi M, Sherafatmandjour A.  2013.  Interaction between cold stress and polyamine on antioxidant properties in dragonhead. International Journal of Agriculture and Crop Sciences 5(21), 2555-2560.

Aebi H.  1984.  Catalase in vitro.  Methods in Enzymology  105, 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3

Aghaee A, Moradi F, Zare-Maivan H, Zarinkamar F, Irandoost HP, Sharifi P.  2013.  Physiological responses of two rice (Oryza sativa L.) genotypes to chilling stress at seedling stage.  African Journal of Biotechnology 10(39), 7617-7621. https://doi.org/10.5897/AJB11.069.

Apostolova P, Yordanova R, Popova L.  2008.  Response of antioxidative defence system to low temperature stress in two wheat cultivars.  General and Applied Plant Physiology 34(3-4), 281-294.

Asada K, Foyer C, Mullineaux P.  1994.  Production and action of active oxygen species in photosynthetic tissues.  In: Foyer C H, Mullineaux P M, Ed.  Causes of photooxidative stress and amelioration of defense systems in plants, CRC Press, The United States, p. 77-104.

Bailly C.  2004.  Active oxygen species and antioxidants in seed biology.  Seed Science Research 14(2), 93-107. https://doi.org/10.1079/SSR2004159.

Banu MNA, Hoque MA, Watanabe-Sugimoto M, Matsuoka K, Nakamura Y, Shimoishi Y, Murata Y.  2009.  Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress.  Journal of Plant Physiology 166(2), 146-156. https://doi.org/10.1016/j.jplph.2008.03.002.

Bates L, Waldren R, Teare I.  1973.  Rapid determination of free proline for water-stress studies.  Plant and Soil 39(1), 205-207. https://doi.org/10.1007/BF00018060.

Baum M, Grando S, Ceccarelli S, Backes G, Jahoor A.  2004.  Localization of quantitative trait loci for dryland characters in barley by linkage mapping.  In:  Rao S C, Ryan J, Ed. Challenges and Strategies of Dryland Agriculture, Crop Science Society of America, 191-202. https://doi.org/10.2135/cssaspecpub32.c12.

Borsani O, Valpuesta V, Botella MA. 2001.  Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings.  Journal of Plant Physiology 126(3), 1024-1030. https://doi.org/10.1104/pp.126.3.1024.

Bowler C, Montagu MV, Inze D.  1992.  Superoxide dismutase and stress tolerance.  Annual Review of Plant Biology 43(1), 83-116.

Dai F, Huang Y, Zhou M, Zhang G.  2009.  The influence of cold acclimation on antioxidative enzymes and antioxidants in sensitive and tolerant barley cultivars.  Biologia Plantarum 53(2), 257-262. https://doi.org/10.1007/s10535-009-0048-5.

Desikan R, Hancock JT, Neill SJ. 2004. Oxidative stress signalling. In: Hirt H, Shinozaki K, Ed. Plant Responses to Abiotic Stress, Springer, p. 121-149. https://doi.org/10.1007/b84369.

Dhindsa RS.  1991.  Drought stress, enzymes of glutathione metabolism, oxidation injury, and protein synthesis in Tortula ruralis.  Journal of Plant Physiology 95(2), 648-651.

Dionisio-Sese ML, Tobita S.  1998.  Antioxidant responses of rice seedlings to salinity stress.  Plant Science 135(1), 1-9. https://doi.org/10.1016/S0168-9452(98)00025-9.

Eyidogan F, Öz MT.  2007.  Effect of salinity on antioxidant responses of chickpea seedlings.  Acta Physiologiae Plantarum 29(5), 485-493. https://doi.org/10.1007/s11738-007-0059-9.

Foyer C, Descourvieres P, Kunert K. 1994.  Protection against oxygen radicals: an important defence mechanism studied in transgenic plants.  Plant Cell and Environment 17(5), 507-523. https://doi.org/10.1111/j.1365-3040.1994.tb00146.x.

Gong H, Zhu X, Chen K, Wang S, Zhang C.  2005.  Silicon alleviates oxidative damage of wheat plants in pots under drought.  Plant Science 169(2), 313-321. https://doi.org/10.1016/j.plantsci.2005.02.023.

İşeri ÖD, Körpe DA, Sahin FI, Haberal M.  2013.  Hydrogen peroxide pretreatment of roots enhanced oxidative stress response of tomato under cold stress.  Acta Physiologiae Plantarum 35(6), 1905-1913. https://doi.org/10.1007/s11738-013-1228-7.

Jain M, Mathur G, Koul S, Sarin N.  2001.  Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.).  Plant Cell Reports 20(5), 463-468. https://doi.org/10.1007/s002990100353.

Jung C, Maeder V, Funk F, Frey B, Sticher H, Frossard E.  2003.  Release of phenols from Lupinus albus L. roots exposed to Cu and their possible role in Cu detoxification.  Plant and Soil 252(2), 301-312. https://doi.org/10.1023/A:1024775803759.

Kaur G, Kumar S, Thakur P, Malik JA, Bhandhari K, Sharma K, Nayyar H.  2011.  Involvement of proline in response of chickpea (Cicer arietinum L.) to chilling stress at reproductive stage.  Scientia Horticulturae 128(3), 174-181. https://doi.org/10.1016/j.scienta.2011.01.037.

Kazemi-Shahandashti SS, Maali-Amiri R, Zeinali H, Khazaei M, Talei A, Ramezanpour S S.  2014.  Effect of short-term cold stress on oxidative damage and transcript accumulation of defense-related genes in chickpea seedlings.  Journal of Plant Physiology 171(13), 1106-1116. https://doi.org/10.1016/j.jplph.2014.03.020.

Li HY, Zhang WZ. 2012. Abscisic acid-induced chilling tolerance in maize seedlings is mediated by nitric oxide and associated with antioxidant system. Advanced Materials Research 378-379, 423-427. https://doi.org/10.4028/www.scientific.net/AMR.378-379.423.

Mac Adam JW, Nelson CJ, Sharp RE.  1992.  Peroxidase activity in the leaf elongation zone of tall fescue I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone.  Plant Physiology 99(3), 872-878.

Matysik J, Bhalu B, Mohanty P.  2002.  Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants.  Current Science 82(5), 525-532.

Öktem HA, Eyidoðan F, Demirba D, Bayraç A T, Öz MT, Özgür E, Selçuk F, Yüce M.  2008.  Antioxidant responses of lentil to cold and drought stress. Journal of Plant Biochemistry and Biotechnology 17(1), 15-21. https://doi.org/10.1007/BF03263254.

Omran R G.  1980.  Peroxide levels and the activities of catalase, peroxidase, and indoleacetic acid oxidase during and after chilling cucumber seedlings.  Plant Physiology 65(2), 407-408.

Rai AN, Penna S.  2013.  Molecular evolution of plant P5CS gene involved in proline biosynthesis. Molecular Biology Reports 40(11), 6429-6435. https://doi.org/10.1007/s11033-013-2757-2.

Richner W, Kiel C, Stamp P.  1997.  Is seedling root morphology predictive of seasonal accumulation of shoot dry matter in maize?  Crop Science 37(4), 1237-1241. https://doi.org/10.2135/cropsci1997.0011183X003700040034x.

Scebba F, Sebastiani L, Vitagliano C.  1998.  Changes in activity of antioxidative enzymes in wheat (Triticum aestivum) seedlings under cold acclimation.  Physiologia Plantarum 104(4), 747-752. https://doi.org/10.1034/j.13993054.1998.1040433.x.

Sgherri C, Cosi E, NavariIzzo F.  2003.  Phenols and antioxidative status of Raphanus sativus grown in copper excess.  Physiologia Plantarum 118(1), 21-28.

Stepien P, Klobus G.  2005.  Antioxidant defense in the leaves of C3 and C4 plants under salinity stress.  Physiologia Plantarum 125(1), 31-40. https://doi.org/10.1034/j.1399-3054.2003.00068.x.

Steppuhn H, Asay K.  2005.  Emergence, height, and yield of tall, NewHy, and green wheatgrass forage crops grown in saline root zones.  Canadian Journal of Plant Science 85(4), 863-875. https://doi.org/10.4141/P04-014.

Szabados L, Savouré A.  2010.  Proline: a multifunctional amino acid.  Trends in Plant Science 15(2), 89-97. https://doi.org/10.1016/j.tplants.2009.11.009.

Yong Z, Hao-Ru T, Ya L.  2008.  Variation in antioxidant enzyme activities of two strawberry cultivars with short-term low temperature stress.  World Journal of Agricultural Sciences 4(4), 458-462.