Efficacy of Microbial Biopesticide Formulations in the control of Xanthomonas citri pv. Mangiferaeindicae in Cashew (Anacardium occidentale L.) in Cote D’ivoire

Paper Details

Research Paper 10/10/2022
Views (490) Download (60)
current_issue_feature_image
publication_file

Efficacy of Microbial Biopesticide Formulations in the control of Xanthomonas citri pv. Mangiferaeindicae in Cashew (Anacardium occidentale L.) in Cote D’ivoire

Tehua Amoa Armist, Kouman Abenan Manou Natacha, Koffi Yao Fulgence, Alloue-Boraud Waze Aimée Mireille et Kone Daouda
Int. J. Agron. Agri. Res.21( 4), 18-25, October 2022.
Certificate: IJAAR 2022 [Generate Certificate]

Abstract

The cashew tree (Anacardium occidentale L.) occupies an important place in the world because of its cashew nut. However, its cultivation is confronted with bacteriosis, a bacterial disease caused by Xanthomonas citri pv. Mangiferaeindicae. This disease is one of the main causes of the low yield per hectare of cashew nuts, which fluctuates between 350 and 500 kg/ha. In view of this, it is wise to find ways of controlling this disease. It is in this context the objective of this work was to produce bio-formulations based on bacteria isolated from the rhizosphere of cashew trees, in order to evaluate their effectiveness on the growth of the agent responsible for cashew bacteriosis (Xanthomonas citri pv. Mangiferaeindicae). Thus, two liquid formulations were made from Pseudomonas fluorescens and Bacillus subtilis isolated from the rhizosphere of cashew. Stability, in vitro antagonism and biocontrol tests against Xanthomonas citri pv. Mangiferaeindicae were performed. The results obtained showed an inhibition of the Xanthomonas citri pv. Mangiferaeindicae bacterium with inhibition zones of 8.13 ± 2.1 and 25.20 ± 3.9 mm in diameter respectively for the products formulated with Bacillus subtilis and Pseudomonas fluorescens. In biocontrol tests, both formulated products showed their ability to protect cashew plants against bacterial blight with reduction rates of 80.95 ± 2.3 % and 73.80 ± 5.2% for the Pseudomonas fluorescens and Bacillus subtilis formulations, respectively. These two formulations of bacterial, once tested in cashew plantations, could be used in the biological control of cashew bacterial blight in Côte d’Ivoire.

VIEWS 109

Afouda LCA, Zinsou V, Balogoun RK, Onzo A, Ahohuendo BC. 2013. Inventaire des agents pathogènes de l’anacardier (Anacardium occidentale L.) au Bénin, Bulletin de la Recherche Agronomique du Bénin (BRAB) (73), ISSN sur papier (on hard copy): 1025-2355 et ISSN en ligne (on line) : 1840-7099

Akram A. 2008. Elicitation de la résistance systémique induite chez la tomate et le concombre et activation de la voie de la lipoxygénase par des rhizobactéries non-pathogènes. Thèse de Doctorat, Université de Liège, Belgique. 169 p

Alvarez-Solano O. 2006. Thèse de doctorat, Emulsion inverses très concentrées : influence du procédé et de la formulation sur leurs propriétés rhéologiques, Université de lorraine. 166p

Aridity S. 2004. Thèse de doctorat, Fabrication, stabilité et propriétés rhéologiques des émulsions stabilisées par des particules colloïdales, Université Bordeaux I. 14-16.

Cabrefiga J, Francés J, Montesinos E, Bonaterra A. 2014. Improvement of a dry formulation of Pseudomonas fluorescens EPS62e for fire blight disease biocontrol by combination of culture osmo adaptation with a freeze-drying lyoprotectant. Journal of Applied Microbiology 117, 1122-1131

Camara B, Daouda K, Mauricette S O, Mamadou C. 2015. Maladies et insectes ravageurs de l’anacardier. Livret carte sanitaire anacardier 9 P.

Cardosso JE, Santos AA, Rossetti AG, Vidal JC. 2004. Relationship between incidence and severity of cashew gummosis in semiarid north-eastern Brazil. Plant Pathology 53(3), 363-367

Fatima Z, Saleemi M, Zia M, Sultan T, Aslam M, Chaudhary M F. 2009. Antifungal activity of plant growth-promoting rhizobacteria isolates against Rhizoctonia solani in wheat. African Journal of Biotechnology 8, 219-225

Groth JV, Ozmon E A, Busch R H. 1999. Respeatability and relationship of incidence and severity measures of scab of wheat caused by Fusarium graminearum in inoculated nurseries. Plant Disease 83, 1033-1038

Kumar Mishra V, Kumar A. 2012. Plant growth promoting and phytostimulatory potential of Bacillus subtilis and Bacillus amyloliquefaciens. Agricultural and biological sciences 7(7), 509-519

McGregor CH, Wolff J A, Arora S K, Hylemon P B, Phibbs P V. 1992. Catabolite repression control in Pseudomonas aeruginosa. In: Pseudomonas, Molecular Biology and Biotechnology (E Galli, S Silver, B Witholt, eds), Am Soc Microbiol, Washington, DC pp. 198-207

Mensah A, El Aissaoui A, El Yousfi B. 2017. Etude de biopesticides à base d’ortie (Urtica dioica L.): Rhéologie d’application et test du pouvoir fongicide. Revue Marocaine de Protection des Plantes 11, 41-53

Moral J, Trapero A. 2009. Assessing the susceptibility of olive cultivars to anthracnose caused by Colletotrichum acutatum. Plant Disease 93, 1028-1036

Nguefack J, Somda I, Mortensen CNAZP. 2005. No Title Evaluation of five essential oils from aromatic plants of Cameroon for controlling seed-borne bacteria of rice (Oyzae sativa L.). Seed Science and Technology 33, 397-407

Pérez-García A, Romero D, Vicente A D. 2011. Plant protection and growth stimulation by microorganisms: Biotechnological applications of Bacilli in agriculture. Current Opinion Biotechnology 22(2), 187-193

Popp J, Petö K, Nagy J. 2013. Pesticide productivity and food security. A review. Agron. Sustainable Dev 33, 243-255

Showkat S, Murtaza I, Laila O, Ali A. 2012. Biological Control of Fusarium oxysporum and Aspergillus sp. by Pseudomonas fluorescens isolated from wheat rhizosphere soil of Kashmir. IOSR Journal of Pharmacy and Biological Sciences 1, 24-32

Silue N, Soro S, Koné M, Daouda K. 2017. Parasitical fungi in cashew (Anacardium occidentale L.) Orchard of Côte d’Ivoire. Plant Pathol. J. 16, 82-88

Soro D. 2012. Couplage de procédés membranaires pour la clarification et la concentration du jus de pomme de cajou : performances et impacts sur la qualité des produits. Thèse de doctorat : Sciences des Procédés-Sciences des Aliments. Montpellier SUPAGRO : Institut des régions chaudes. 156 P

Soro S, Silué N, Ouattara G M, Chérif M, Camara B, Sorho F, Abo K, Koné M, Kouadio Y J, Koné D. 2017. Intensification agro-écologique de la production et de la transformation du cajou en Afrique : Acquis scientifiques et technologiques- Perspectives, Colloque International d’échanges scientifiques sur l’anacarde (CIESA), 26-28 Octobre, Bassam, Côte d’Ivoire, pp 138-142

Thakore Y. 2006. The biopesticide market for global agricultural use. Industrial Biotechnology 2(3), 294-208.

Toty AA, Guessennd N, Bahi C, Kra AM, Otokore DA, Dosso M. 2013. Évaluation in-vitro de l’activité antibactérienne de l’extrait aqueux de l’écorce de tronc de Harungana madagascariensis sur la croissance de souches multi-résistantes. Bulletin de la Société Royale des Sciences de Liège (82), 12-21

Wojcieh J J, Lise K. 2002. Biological control of postharvest diseases of fruits. Annu. Rev. Phytopatol. 40, 411-441

Zombré C, Sankara P, Ouedraogo S L, Wonni I, Boyer K, Boyer C, Terville M, Javegny S, Allibert A, Vernière C, Pruvost O. 2016. Natural infection of cashew (Anacardium occidentale) by Xanthomonas citri pv. Mangiferaeindicae in Burkina Faso. Plant Disease 100, 718-723