Evaluation of callus formation and embryogenesis in saffron (Crocus sativus L.) for flower harvesting

Paper Details

Research Paper 01/01/2015
Views (858)
current_issue_feature_image
publication_file

Evaluation of callus formation and embryogenesis in saffron (Crocus sativus L.) for flower harvesting

Mirjalili Seyed Abbas and Poorazizi Elahe
J. Biodiv. & Environ. Sci. 6(1), 127-131, January 2015.
Copyright Statement: Copyright 2015; The Author(s).
License: CC BY-NC 4.0

Abstract

Crocus sativus is belonging to Iridaceae. Due to its triploid nature it is sterile and is not able to set seeds, so it is propagated only by corms. Breeding and producing corms with free pathogens especially viruses is generally difficult; although vegetative production of the plant does easily by new corms. The aim was optimizing medium, hormones, sucrose level and temperature for embryogenesis and shoot elongation of saffron. Therefore, an experimental study was done in 7 treatments and 4 replications in two temperatures. Benzyl Adenopurine and 2,4-Dichlorophenoxy acetic acid were plant growth regulators. Data analyzed by statistical software. Results showed that the highest callus formation was in T4 containing 1 mg/lit of 2,4-D and 2 mg/lit BAP with the mean of 44.2 %. Also, the treatment with 45 gm/lit of sucrose produced the most length of shoot. The highest embryogenesis occurred in 4C.

Aguero C, Tizio R. 1994. In vitro mass bulbification as a preliminary contribution to saffron (Crocus sativus L.). Biocell 18, 55–63.

Ahuja A, Koul S, Ram G. 1994. Somatic embryogenesis and regeneration of plantlets in saffron, Crocus sativus L. Indian Journal of Experimental Biology 32, 135–140.

Bhagyalakshmi N. 1999. Factors influencing direct shoot regeneration from ovary explants of saffron. Plant Cell Tissue Organ Culture 58, 205– 211.

Darvishi E, Zarghami R, Mishani CA, Omidi M. 2007. Effects of different hormone treatments on non-embryogenic and embryogenic callus induction and time-term enzyme treatments on number and viability of isolated protoplasts in saffron (Crocus sativus L.). Acta Horticulturae 739, 279 – 284.

Deo B. 2003. Growing Saffron – The World’s Most Expensive Spice, Crop & Food Research. New Zealand Institute of Crop & Food Research, No. 20.

Dhar AK, Sapru R. 1993. Studies on saffron in Kashmir. III. In vitro production of corm and shoot-like structures. Indian Journal of Genetic Plant Breeding 53, 193–196.

Ding BZ, Bai SH, Wu Y, Fang XP. 1979. Preliminary report on tissue culture of corm production of Crocus sativus L. Acta Botanica Sinica 21: 4, 387-390.

Ebrahimzadeh H, Karamian R, Noori-Daloii MR. 2000. Somatic embryogenesis and regeneration of plantlet in saffron, Crocus sativus L. Journal of Science Islamic Republic of Iran, 11: 3, 169-173.

Fernández JA. 2004. Biology, biotechnology and biomedicine of Saffron. Recent Research and Development in Plant Science 2,127-159.

Ilahi I, Jabbeen M, Firdous N. 1987. Morphogenesis with saffron tissue culture. Journal of Plant Physiology 128, 227–232.

Karaoglu C, Cocu S, Ipek A, Parmaksiz I, Sarihan E, Uranbey S, Arslan N, Kaya MD, Sancak C, Ozcan S, Gurbuz B, Mirici S, Khawar KM. 2007. In vitro micropropagation of saffron. Acta Horticulturae 739, 223–228.

Mir JI, Ahmed N, Wani SH, Rashid R, Mir H, Sheikh MA. 2010. In vitro development of microcorm and stigma like structures in saffron (Crocus sativus L.). Physiology and Molecular Biology of Plants, 16: 4, 369–373

Murashige T, Skoog F. 1962. A revised medium of rapid growth and bioassay with Tobacco tissue cultures. Physiologia Plantarum 15, 473–497.

Otsuka M, Saimoto HS, Murata Y. Kawashima 1992. Methods for producing saffron stigma-like tissue. United States Patent. US 5085995,8 pp, A28.08.89 US 399037, P 04.02.92.

Plessner O, Ziv M. 1999. In vitro propagation and secondary metabolite production in Crocus sativus L. OPA (Overseas Publishers Association) N.V. Published by license under the Harwood Academic Publishers imprint, part of the Gordon and Breach Publishing Group.

Raja W, Zaffer G, Wani SA. 2007. In vitro microcorm formation in saffron (Crocus sativus L.). Acta Horticulturae 739, 291–296.

Sampathu SR, Shivashankar S, Lewis YS. 1987. Saffron (Crocus sativus L.): cultivation, processing, chemistry and standardization. CRC Critical Reviews in Food Science and Nutrition 20, 2, 123-157.

Related Articles

Antioxidant and anti-inflammatory activity of Pleurotus citrinopileatus Singer and Pleurotus sajor-caju (Fr.) Singer

P. Maheswari, P. Madhanraj, V. Ambikapathy, P. Prakash, A. Panneerselvam, J. Biodiv. & Environ. Sci. 27(2), 90-96, August 2025.

Mangrove abundance, diversity, and productivity in effluent-rich estuarine portion of Butuanon River, Mandaue City, Cebu

John Michael B. Genterolizo, Miguelito A. Ruelan, Laarlyn N. Abalos, Kathleen Kay M. Buendia, J. Biodiv. & Environ. Sci. 27(2), 77-89, August 2025.

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.

Conservation and trade dynamics of non-timber forest products in local markets in south western Cameroon

Kato Samuel Namuene, Mojoko Fiona Mbella, Godswill Ntsomboh-Ntsefong, Eunice Waki, Hudjicarel Kiekeh, J. Biodiv. & Environ. Sci. 27(2), 58-69, August 2025.

Overemphasis on blue carbon leads to biodiversity loss: A case study on subsidence coastal wetlands in southwest Taiwan

Yih-Tsong Ueng, Feng-Jiau Lin, Ya-Wen Hsiao, Perng-Sheng Chen, Hsiao-Yun Chang, J. Biodiv. & Environ. Sci. 27(2), 46-57, August 2025.

An assessment of the current scenario of biodiversity in Ghana in the context of climate change

Patrick Aaniamenga Bowan, Francis Tuuli Gamuo Junior, J. Biodiv. & Environ. Sci. 27(2), 35-45, August 2025.

Entomofaunal diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivation systems within the cotton-growing zone of central Benin

Lionel Zadji, Roland Bocco, Mohamed Yaya, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, J. Biodiv. & Environ. Sci. 27(2), 21-34, August 2025.

Biogenic fabrication of biochar-functionalized iron oxide nanoparticles using Miscanthus sinensis for oxytetracycline removal and toxicological assessment

Meenakshi Sundaram Sharmila, Gurusamy, Annadurai, J. Biodiv. & Environ. Sci. 27(2), 10-20, August 2025.