Interactive effects of cadmium stress and proline on physiological and biochemical parameters of faba bean plant

Paper Details

Research Paper 01/05/2018
Views (373) Download (23)
current_issue_feature_image
publication_file

Interactive effects of cadmium stress and proline on physiological and biochemical parameters of faba bean plant

Amri Assia, Layachi Naima
Int. J. Biosci.12( 5), 86-98, May 2018.
Certificate: IJB 2018 [Generate Certificate]

Abstract

Heavy metal stress is one of the major abiotic stresses that cause environmental pollution in recent decades. Under stress, Proline accumulated in many plants and acts as a signaling molecule and trigger specific gene expression, which can be essential for plant recovery from stress .Therefore, the present experiment was aimed to study the effect of proline on the performance of faba bean under cadmium stress condition. The effect of exogenous application of proline with different concentrations (0, 25 or 50mg / l) on faba bean (Vicia faba) plant grown under cadimium levels (0 or 150µM/l).Under Metal stress condition, all parameters [plant height and root length, root and shoot fresh weight, total soluble carbohydrates (TSC), chlorophyll (Chl) a and b, and total chlorophyll of faba beans were strongly depressed, except malondialdehyde (MDA) and proline contents. From these results, proline treatment alleviated the adverse effects of metal stress through increased the photosynthetic pigments, total carbohydrates, plant height and  fresh  weights of shoot, and seed yield as well as, total soluble sugars, compared with those of the corresponding cadimium levels, while decreased lipid peroxidation product as malondialdehyde (MDA) and the content of proline. These results indicate that application of proline was effective, and helped the plant to restore the altered physiological process induced by cadmium stress.

VIEWS 21

Ahmad P, Sharma S, Srivastava PS. 2006. Differential physio-biochemical responses of high yielding varieties of Mulberry (Morus alba) under alkalinity (Na2CO3) stress in vitro. Physiology and Molecular Biology of Plants 12,59–66. https://www.researchgate.net/publication/285969464

Ali  Q,  Ashraf M, Athar H. 2007. Exogenously applied proline at different growth stages enhances growth of two maize cultivars grown under water deficit conditions. Pakistan Journal of Botany 39,1133-1144. http://www.pakbs.org/pjbot/PDFs/39%284%29/PJB39%284%291133.pdf

Ali H,  Khan K, Sajad M. 2013. Phytoremediation of heavy metals—concepts and applications. Chemosphere  91 ( 7), 869–881. https://www.ncbi.nlm.nih.gov/pubmed/23466085

Ali SG, Rab A, Khan N, Nawab K. 2011. Enhanced proline synthesis may determine resistance to salt stress in tomato cultivars. Pakistan Journal of Botany 43, 2707-2710. https://www.researchgate.net/publication/287550322_Enhanced_proline_synthesis_may_determine_resistance_to_salt_stress_in_tomato_cultivars

Aly A, Mohamed A. 2012. The impact of copper ion on growth, thiol compounds and lipid peroxidation in two maize cultivars (Zea mays L.) grown in vitro. Australian Journal of Crop Science6, 541–549. http://www.cropj.com/aly_6_3_2012_541_549.pdf

Ashraf M, Foolad MR.2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and experimental botany 59, 206-216. http://agris.fao.org/agris-search/search.do?recordID=US201300753915.

Azooz  M, Alzahrani A, Youssef M. 2013. The potential role of seed priming with ascorbic acid and nicotinamide and their interactions to enhance salt tolerance in broad bean (Vicia faba L.). Australian Journal of Crop Science 7(13), 2091-2100. http://www.cropj.com/azooz_7_13_2013_2091_2100.pdf.

Bajguz A. 2011. Suppression of Chlorella vulgaris Growth by Cadmium, Lead, and Copper Stress andIts Restoration by Endogenous Brassinolide. Archives of Environmental Contamination and Toxicology 60, 406-416. https://www.ncbi.nlm.nih.gov/pubmed/20523975.

Barcelo JM, Vazquez CH. Poschenrieder.1988. Cadmium-indused structural and ultra-stuctural changes in the vascural system of bush bean stems. Botanica Acta 101,254–26.

Bates  L,Waldan  L, Teare M.1973. Rapid determination of free proline under water stress studies. Plant and Soil 39, 205-207. https://link.springer.com/article/10.1007/BF00018060

Belkhodja M, Benkablia M. 2000.Proline response of faba bean (Vicia faba L.) under salt stress. Egyptian Journal of Agricultural Research 78 (1), 185195.

Bellinger, Bensaoud A, Larher F. 1989. Physiology breeding of winter cereals for stress environments Colloque, N°3, Montpellier, France.

Benkhaled L,  Gomez A, Honrubia M, Oihabi A.2003.Effet du stress salin en milieu hydroponique sur le trèfle inoculé par le Rhizobium. Agronomie 23, 553-560. https://hal.archives-ouvertes.fr/hal-00886208/document

Boutelier E.1986. Effet du NaCl sur la physiologie du cotonnier (Gossypium hirsutum L.).Son rôle dans l’acquisition de la résistance à la sécheresse. PhD thesis, University of Paris, France6-142 p.

Brahim L, Mohamed M. 2011. Effects of copper stress on antioxidative enzymes, chlorophyll and protein content in Atriplex halimus. African Journal of Biotechnology 50,10143–10148. https://www.ajol.info/index.php/ajb/article/view/95894/85242

Chaffei C, Pageau K, Suzuki A, Gouia H, Ghorbel MH, Masclaux-Daubresse C. 2004. Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Cell Physiology 45(11), 1681-93.

Chen H, Kuang D,Wang J.1995.Studies on selection and characterisation of a stress tolerant sugarcane cell line. Chines Journal of Biotechnoogy 11,2. https://www.ncbi.nlm.nih.gov/pubmed/8562854

Chon S, Park J, Choi W,Jung S. 2003. Differential physiological responses of soybean. Korea soybean 20, 17–27.

Clemens S. 2006. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88,1707–1719. https://www.sciencedirect.com/science/article/pii/S0300908406001428

Cobbett CS, Goldsbrough P.2002. Phytochelatins and metallothioneins:Roles in heavy metal detoxification and homeostasis.Annual Review of Plant Physiology and Plant Molecular Biology 53,159–182. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.465.6453&rep=rep1&type=pdf

Crépon K,Marget P, Peyronnet Carrouée  B, Arese P, Duc G. 2010. Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. Field Crops Research 115(3),329-339 . https://www.sciencedirect.com/science/article/pii/S0378429009002512

Dal Corso F,  Bigoni  D.2008.The interactions between shear bands and rigid lamellar inclusion. Proceedings of  the Royal Society 465, 143–163. http://rspa.royalsocietypublishing.org/content/465/2101/143

Ekmekci Y, Tanyolac D, Ayhan B. 2008. Effects of cadmium on antioxidant enzyme and photosyn-thetic activities in leaves of two maize cultivars. Journal of Plant Physiology 165, 600 – 611.

Emamverdian A, Ding Y,Mokhberdoran F, Xie Y. 2015. Heavy metal stress and some mechanisms of plant defense response. Scientific World Journal 756120,18 . https://www.hindawi.com/journals/tswj/2015/756120/

Farooq M, Basra S, Wahid A, Cheema Z, Cheema MA,Khaliq A. 2008. Physiological role of exogenously applied glycinebetaine in improving drought tolerance of fine grain aromatic rice (Oryza sativa L.). Journal of Agronomy and Crop Science 194, 325-333. https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1439-037X.2008.00323.x

Feitosa LC, Cambraia J, OlivoCano M, Ruiz H.2001. Plant growth and solute accumulation and distribution in two sorghum genotypes under NaCl stress. Braz. Journal of Plant  Physiology13,270-284. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-31312001000300003

Fidalgo F, Azenha M, Silva AF.2002.Copper-induced stress in Solanum nigrum L. and antioxidant defense system response. Food and Energy Security2, 70–80. https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.20.

Ghanbari A,  Dahmardeh M.2010. Barat Ali Siahsar and Mahmoud Ramroudi. Effect of maize (Zea mays L.)-cowpea (Vigna unguiculata L.) intercropping on light distribution, soil temperature and soil moisture in arid environment. Journal of Food, Agriculture and Environment 8(1), 102-108.

Gill  M. 2014. Heavy metal stress in plants. International Journal of Advanced Research 2, 1043-1055.

Greenway H, Munns R.1980. Mechanims of salt tolerance in non halophytes. Annual Review of Plant Phyiology 25,149-190. https://www.annualreviews.org/doi/abs/10.1146/annurev.pp.31.060180.001053.

Handique GK, Handique AK.2009.Proline accumulation in lemongrass (Cymbopogon flexuosus Stapf.) due to heavy metal stress. Journal of environmental biology 30,  299–302.

Heuer B. 2003. Influence of exogenous application of proline and glycinebetaine on growth of salt stressed tomato plants. Plant Science 165,693–699. https://www.sciencedirect.com/science/article/pii/S016894520300222X.

Jahari MP, Qasimov N, Maralian H. 2010. Effect of soil water stress on yield and proline content of four wheat lines. African Journal of  Biotechnology  9,036-040. http://www.academicjournals.org/article/article1380735783_Johari-Pireivatlou.pdf.

John R, Ahmad P, Gadgil1 K, Sharma S. 2008.Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant Soil Environ 54,262–270. https://www.agriculturejournals.cz/publicFiles/01591.pdf

John R, Ahmad P, Gadgil K, Sharma S. 2009.Heavy metal toxicity: Effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. International Journal of Plant Production 3, 65–76. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.816.7240&rep=rep1&type=pdf

Karimi  LN, Khanahmadi  M, Moradi B. 2012. Accumulation and Phytotoxicity of Lead in Cynara scolymus. Indian Journal of Science and Technology 5, 3634-3641. http://www.indjst.org/index.php/indjst/article/viewFile/30653/26550

Karimi P, Khavari-Nejad R, Niknam V, Ghahremaninejad F,Najafi F. 2012. The effects of excess copper on Antioxidative enzymes, lipid peroxidation, proline, chlorophyll, and concentration of Mn, Fe, and Cu in Astragalus neomobayenii. Science  World  Journal 1–6. https://www.hindawi.com/journals/tswj/2012/615670/

Khadri M,Tejera NA, Lluch C. 2006. Alleviation of salt stress in common bean by exogenous abscisic acid supply. Journal of Plant Growth Regulation 25, 110–119. https://link.springer.com/article/10.1007/s00344-005-0004-3

Kusvuran S. 2010. Relationships between physiological mechanisms of tolerances to drought and salinity in melons. Department of horticulture, institute of natural and applied sciences university of cukurova. PhD thesis, University of  Adana, Turkey, 356 p.

Kuznetsov V, Shevyakova N. 1999. Proline under stress:biological role, metabolism, and regulation. Russian Journal of Plant Physiology 46,274-289.

Lux A, Martinka M, Vaculı´k M, White PJ. 2011. Root responses to cadmium in the rhizosphere. Journal of Experimental Botany 62, 21–37. https://www.ncbi.nlm.nih.gov/pubmed/20855455

Meloni D, Gulotta M, Martinez C, Oliva M.2004. The effects of salt stress on growth, nitrate reduction and proline and glycinebetaine accumulation in Prosopis alba.Brazilian Journal of Plant Physiology 16, 1-8. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1677-04202004000100006

Metzner H, Rau H, Senger H. 1965. Untersuchungen Zur Synchronisier barkeit einzelner Pigmentmangel-Mutanten Von Chlorella. Planta 65,186-194. https://link.springer.com/article/10.1007/BF00384998

Moussa H, Abdel-Aziz M. 2008. Comparative response of drought tolerant and drought sensitive maize genotypes to water stress. Australian Journal of Crop Science 1, 31-36.

Nagajyoti P, Lee K, Sreekanth T. 2010.Heavy metals, occurrence and toxicity for plants. Environmental Chemistry Letters 8(3), 199–216. https://link.springer.com/article/10.1007/s10311-010-0297-8

Nazarbeygi E, Yazdi HL, Naseri R, Soleimani R.2011. The effects of  different levels of salinity on proline and A-, B- chlorophylls in canola. American-Eurasian Journal Of Agricultural & Environmental Sciences 10(1),70-74. https://pdfs.semanticscholar.org/f85b/432f81b0b43616f32a7fcacd24fda4c67bb4.pdf

Pant P, Tripathi AK, Dwivedi V.2011. Effect of heavy metals on some biochemical parameters of sal (Shorea robusta) seedling at nursery. Journal of Agricultural Science 2, 45–51.

Paquin R.1986.Effet de l’humidité du sol sur la teneur en proline libre et des sucres totaux de la luzerne endurcie au froid et à la sécheresse. Canadian Journal of Plant Science 66,95-101. http://www.nrcresearchpress.com/doi/pdf/10.4141/cjps86-012

Pilipović A, Nikolić N, Orlović S, Petrović N,Krstić B.2005. Cadmium Phytoextraction Potential of Poplar Clones (Populus spp.). Zeitschrift für Naturforschung 60, 247–251.

Quein YL, Wilhelm JI,  Marcum KB. 2001 .Comparative responses of two kentucky Bluegrass cultivars to salinity stress. Crop Science 41,1895-1900. https://dl.sciencesocieties.org/publications/cs/abstracts/41/6/1895

Rahimi T, Mohammakhani, Roohi V, Armand N. 2012. Effects of salt stress and silicon nutrition on cholorophyll content, yield and yield components in fennel (Foeniculum vulgar Mill.).International Journal of Agriculture and Crop Sciences 4(21),1591-1595. http://pakacademicsearch.com/pdf-files/agr/70/1591-1595.pdf

Sairam RK,Srivastava GC,Saxena DC. 2000. Increased antioxidant activity under elevated temperature: a mechanism of heat stress tolerance in wheat genotypes. Biologic Plant arum 43, 245-251. https://link.springer.com/article/10.1023/A:1002756311146

Saleh M, Al-Garni S. 2006. Increased heavy metal tolerance of cowpea plants by dual inoculation of an arbuscular mycorrhizal fungi and nitrogenfixer Rhizobium bacterium. African Journal of Biotechnol 5,133–142. https://tspace.library.utoronto.ca/bitstream/1807/6651/1/jb06020.pdf

Scott T, Melvin E. 1956. Anthrone colorimetric method. In: Whistler RL, Walfrom ML (ed.) Methods in Carbohydrate Chemistry. Academic Press, New York, London,1, 384 p.

Sevengor S. 2011. Investigations on antioxydant enzyme activities under in vitro and in vivo conditions to obtain salt tolerance in squash (Cucurbita pepo L.). PhD thesis, university of Ankara , Turkey , 179 p.

Sivaramakrishnan S, Patte VZ, Floweret J, Peacock M. 1988.Proline accumulation and reductase activity in contrasting sorghum lines during mid season drought stress. Plant Physiology 74, 418-426. https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1399-3054.1988.tb01997.x

Smirnoff  N, Cumbes Q.1989. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28, 1057-1060. https://www.sciencedirect.com/science/article/abs/pii/0031942289801827

Szabados L,  Savouré A. 2009. Proline: A multifunctional amino acid. Trends Plant Science15, 89-97.

Theriappan P, Gupta  AK, Dhasarrathan P. 2011. Accumulation of proline under salinity and heavy metal stress in cauliflower seedlings. Journal of Applied Sciences and Environmental Management 15, 251–255. http://www.bioline.org.br/pdf?ja11044

Thounaojam  T, Panda  P, Mazumdar P, Kumar D, Sharma GD, Sahoo L,Panda SK. 2012.Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiology Biochemistry 53,33–39.

Titov AF, Alanova VV, Oeva NP. 1996. Growth responses of barley and wheat seedlings to lead and cadmium. Biologia Plantarum 38, 341–346. https://link.springer.com/article/10.1007/BF02896675

Vassilev A, Berova M, Stoeva  N, Zlatev  Z. 2005. Chronic Cd toxicity of bean plants can be partially reduced by supply of ammonium sulphate.Journal of Central European Agriculture 6, 389-396. https://hrcak.srce.hr/ojs/index.php/jcea/article/view/314

Vendruscolo EC, Schuster I, Pileggi M, Scapim CA, Molinari HB, Marur CJ, Vieira LG. 2007. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. Plant Physiology 164(10),1367-76.

Wagner GJ. 1993. Accumulation of cadmium in crop plants and its consequences to human health. Advances Agronomy 51,173-212.

Wang W, Akbar S, Jia X, He Z, Tian X.2016.Effect of heavy metals combined stress on growth and metals accumulation of three Salix species with different cutting position. International Journal of Phytoremediation 2(8), 761-7. https://doi.org/10.1080/15226514.2015.1131237

Weimberg R.1987.solutes adjustments in leave of two species of wheat at two different stages of growth in response of salinity. Physiology Plant 70,381-388. https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1399-3054.1987.tb02832.x

Yoon BS, Jin CJ, Un PS,Cho DH. 2005.Change in photosynthesis, proline content, and osmotic potential of Corn seedling under highsaline condition. Korean Journal of Crop Science 50,28–31.

Yordanov  I, Velikova V, Tsonev T. 2003. Plant responses to drought and stress tolerance. Bulgarian Journal of Plant Physiology, Special İssue, 187-206. https://link.springer.com/article/10.1023/A:1007201411474

Zengin F, Munzuroglu O. 2005. Effect of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in bean (Phaseolus on Faba Bean (Vicia faba L.) Plants by Exogenous Application of Salicylic Acid.World Applied Sciences Journal 27(4), 418-427. https://pdfs.semanticscholar.org/e342/a724891892869c72d58332d8e2d0881ba97d.pdf

Zhang Y, Han X, Chen X, Jin H,Cui X. 2009. Exogenous nitric oxide on antioxidative system and ATPase activities from tomato seedlings under copper stress. Scientia Hortic 123,217–223.

Zhao SJ, Xu CC, Zhou Q, Meng QW.1994.Improvements of the method for measurement of malondialdehyde in plant tissue. Plant Physiology Communications 30,207–210. https://link.springer.com/article/10.1007/s004250050524