Local plants as sources of the phytoecdysteroid, 20-hydroxyecdysone

Paper Details

Research Paper 08/09/2023
Views (906)
current_issue_feature_image
publication_file

Local plants as sources of the phytoecdysteroid, 20-hydroxyecdysone

Elizabeth P. Obra
Int. J. Biosci. 23(3), 132-140, September 2023.
Copyright Statement: Copyright 2023; The Author(s).
License: CC BY-NC 4.0

Abstract

Ecdysteroids derived their name from the insect molting process known as ecdysis. They are substances extensively explored as growth promoters for both plants and insects, essentially harmless to humans and appear to have a number of side effects that are considered to be beneficial. Physiologically active plant steroids known as phytoecdysteroids (PEs) contain structures like those of insect molting hormones are widely distributed in plants and acting as defense against phytophagous (plant-eating) insects. Numerous biological, pharmacological, and therapeutic features of PEs have been linked to their use in the treatment and prevention of both acute and chronic illnesses. The most abundant and common PE is the 20-hydroxyecdysone (20E). Achyranthes aspera L., Amaranthus spinosus L., Ipomea pes-caprae L. and Portulaca oleracea L are common local plants in the Philippines and were investigated to determine the presence of 20E through High Performance Liquid Chromatography. Achyranthes aspera L., Amaranthus spinosus L., and Portulaca oleracea L. contained 2 peaks close to the retention time of the target compound. Ipomea pes-caprae L., only one peak is observed within ± 0.120 minutes. Plant samples, Ipomea pes-caprae L. and Portulaca oleracea L. had peaks with retention times not significantly different from that of the standard were found, indicating presence of 20-hydroxyecdysone in these samples. The ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS) to confirm the presence or absence of 20E can be done as well to identify the other components of the samples, particularly those eluting near the retention time of 20E.

Adams Michael. 2003. Ecdysteroids. Encyclopedia of Insects. Resh, V & Carde, R. Eds. Academic Press, Elsevier Science, USA.

Arif Y, Singh P, Bajguz A, Hayat S. 2022. Phytoecdysteroids: Distribution, Structural Diversity, Biosynthesis, Activity, and Crosstalk with Phytohormones. Int J Mol Sci 23(15), 8664.

DOI: 10.3390/ijms23158664. PMID: 35955797; PMCID

Asha S, Rekha R, Sadiq AM. 2016. Amaranthus spinosus– A review. Bulletin of Environment, Pharmacology, and Life Sciences 5(9). Acadey for Environment and Life Sciences, India. eISSN: 2277-1808.

Chapman RF. 2013. The Insects. Structure and Function, 5th ed., Cambridge University Press, UK.

Daniel M, Mammen D. 2014. “Ecdysterone and Antioxidants in Purslane (Portulaca oleracea Linn.).” Asian Journal of Chemical and Pharmaceutical Research, AJCPR 2(2), 137-139.

Dinan L, Lafont R. 2006. Effects and applications of arthropod steroid hormones (ecdysteroids) in mammals. The Journal of endocrinology 191(1), 1-8.

Dinan Laurence. 2009. The Karlson Lecture. Phytoecdysteroids: what use are they?. Archives of insect biochemistry and physiology 72(3), 126-141. https://doi.org/10.1002/arch.20334

Ganjir Minakshi, Dipti Ranjan Behera, Sunita Bhatnagar. 2013. “Phytochemical anlysis, csytotic and antioxidant potential of Ipomoea pes-caprae (L) R. Br and Merrenia umbellata (L) H. Hallier”. International Journal of Scientific & Technology Research 2(5).

Knothe G, Luis F Razon, Domingo A Madulid, Esperanza Maribel G Agoo, Maria Ellenita G de Castro. 2017. “Fatty Fatty Acid Profiles of Garuga floribunda, Ipomoe apes‐caprae, Melanolepis multiglandulosa and Premna odorata Seed Oils.” Journal of the American Oil Chemists’ Society 94(2).

Kreis W, Muller-Uri F. 2010. “Biochemistry of sterols, cardiac glycosides, brassinosteroids, phytoecdysteroids and steroid saponins”. Biochemistry of Plant Secondary Metabolism. Annual Plant Reviews Vol. 40, 2nd ed., Wink, M., Ed. John Wiley & Sons, Ltd., Publication, 304-347

Kurian JC. 2010. Amazing Healing Plants Vol. 1. Philippine Publishing House, ISBN 978-971-581-211-5.

Ladion-De Guzman H. 1985. Healing Wonders of Herbs. Philippine Publishing House, Manila, Philippines. ISBN 971-1019-01-9.

Niranjan Das, Siddhartha Kumar Mishra, Anusha Bishayee, Euns S Ali, Anupam Bishayee. 2021. The phytochemical, biological, and medicinal attributes of phytoecdysteroids: An updated review, Acta Pharmaceutica Sinica B.

Rojas-Sandoval and Acevedo-Rodríguez. 2012. Achyranthes aspera (Devil’s horsewhip). CABI Compendium. https://doi.org/10.1079/cabicom pend ium.2664

Sable KV, Saswade RR. 2017. Preliminary phytochemical analysis of Amaranthus spinosus leaves; International J. of Life Sciences 5(4), 742-745.

Stuart, G. n.d. “Bagasua” retrieved from http:// www. stuartxchange.com/Bagasua.html

Stuart, G. n.d. “Kolitis” retrieved from http:// www. stuartxchange.com/Kolitis.html

Thiem B, Kikowska M, Maliński MP, Dariusz Kruszka, Marta Napierała and Ewa Florek. 2017. Ecdysteroids: production in plant in vitro cultures. Phytochem Rev 16, 603-622. https://doi.org/10.1007/s11101-016-9483-z

Yahya Al Naggar, Mohamed Ghorab, Kariman Mohamed. 2017. “Phytoecdysteroids: Isolation and Biological Applications.” American Journal of Life Sciences 5(1), pp. 7-10. doi: 10.11648/j.ajls. 20170

Yan-Xi Zhou, Hai-Liang Xin, Khalid Rahman, Su-Juan Wang, Cheng PengHong Zhang. 2015. “Portulaca oleracea L.: A Review of Phytochemistry and Pharmacological Effects.” Review Article. BioMed Research International. Vol 2015, Article ID 925631, Hindawi Publishing Corporation.

Related Articles

Hepatoprotective and antinociceptive effects of terpinolene in streptozotocin-induced diabetic peripheral neuropathic rats

Ravishankar Sarumathi, Muthukumaran Preethi, Chandrasekaran Sankaranarayanan*, Int. J. Biosci. 27(6), 156-166, December 2025.

Agromorphological characterization of six promising bambara groundnut [Vigna subterranea (L.) Verdc.] genotypes under selection in Burkina Faso

Adjima Ouoba*, Ali Lardia Bougma, Dominique Nikiéma, Mahamadi Hamed Ouédraogo, Nerbéwendé Sawadogo, Mahama Ouédraogo, Int. J. Biosci. 27(6), 145-155, December 2025.

Integrated in silico and in vitro analyses reveal E-cadherin crosstalk and TF: FVIIa complex-mediated trophoblast motility via MEK/JNK activation

Kirthika Manoharan, Jagadish Krishnan, Vijaya Anand Arumugam, Shenbagam Madhavan*, Int. J. Biosci. 27(6), 136-144, December 2025.

Effect of flooding depth and harvest intensity on soil moisture dynamics and production of baobab (Adansonia digitata) seedlings

Sissou Zakari, Pierre G. Tovihoudji, Mouiz W. I. A. Yessoufou, Sékaro Amamath Boukari, Vital Afouda, Imorou F. Ouorou Barrè, Int. J. Biosci. 27(6), 127-135, December 2025.

Local food processing and associated hygienic quality in greater Lomé, Togo: Traditional cooked corn-based dough akpan wrapped in M. cuspidata, M. mannii and M. purpurea species leaves

Mamy Eklou, Komlan Edjèdu Sodjinou, Kodjo Djidjolé Etse, Awidèma Adjolo, Benziwa Nathalie Johnson, Bayi Reine Dossou, Yaovi Ameyapoh, Raoufou Radji, Akossiwoa M-L Quashie, Int. J. Biosci. 27(6), 114-126, December 2025.

Improving the microbiological quality of spices and spice blends using treatments accessible to SMEs/SMIs

Pingdwindé Marie Judith Samadoulougou-Kafando, Korotimi Traoré, Crépin Ibingou Dibala, Aboubacar Sidiki Dao, Josias Nikiema, Idrissa Taram, Adama Pare, Inoussa Salambéré, Donatien Kaboré, Charles Parkouda, Int. J. Biosci. 27(6), 102-113, December 2025.

Twin-row planting practice in village sugarcane (Saccharum officinarum L.) plantations during first ratoon under rainfed conditions in northern Côte d’Ivoire

Allé Yamoussou Joseph, Sawadogo Fatima, Traoré Mohamed Sahabane, Fondio Lassina, Int. J. Biosci. 27(6), 91-101, December 2025.

Prevalence of dengue infection in Delta State, Nigeria

P. A. Agbure, O. P. G. Nmorsi, A. O. Egwunyenga, Int. J. Biosci. 27(6), 82-90, December 2025.