Na+ and K+ accumulation at Atriplex grains (Halimus, Nummularia, Canescence) after application of NaCl at the germination stage

Paper Details

Research Paper 01/11/2018
Views (568)
current_issue_feature_image
publication_file

Na+ and K+ accumulation at Atriplex grains (Halimus, Nummularia, Canescence) after application of NaCl at the germination stage

Chafika Rezkallah, Achraf Rezkallah
J. Biodiv. & Environ. Sci. 13(5), 136-141, November 2018.
Copyright Statement: Copyright 2018; The Author(s).
License: CC BY-NC 4.0

Abstract

This study is based on showing the extent to accumulation of the Na+ and K+ As a way to tolerate high grades of salinity Which is characterized by the plant Atriplex. This experiment was applied to the laboratories of the faculty of science of nature and life at the Echahid Hamma Lakhdar University of Eloued during the year 2016-2017, To understand the behavior of the three kinds of seeds of Atriplex (halimus, canescens, nummularia), at the application of different doses of (Na Cl) which: (0 g/L, 1 g/l, 2 g/l, 4 g/l, and 8 g/l). Up to the germination stability make the analysis of salt accumulated (Na+ and K+) at the grain level of each dose applied by spectrometer a flamm. This experiment was done according to a random design in three repetition, the results showed the dominance of variety of A. halimus with respect to A. nummularia. and A. canescens at germination level and . The results also showed the dominance of A. halimus versus A. nummularia and A. canescens at the level of adaptation for high concentrations. Also the results have generally shown that the A. nummularia 5150 (mg/l) has a strong storage with respect to A. canescens 4800 (mg/l) and A. halimus 3250 (mg/l)  at both low and high Na+ concentrations, for K+ concentration the strong storage in A. nummularia 173(mg/l) with respect to A. canescens158 (mg/l) and A. halimus 132 (mg/l) . According to the results it can be deduced that the grains of A. halimus was the most potent for salt stress before the variety A. nummularia following them, while the Atriplex. Canescens was too sensitive, and the concentration (0 g/l) is the perfect concentration and suitable for all.

Bajji M, Kinet JM, Lutts S. 1998. Salt stress effects on roots and leaves of Atriples halimus L. and their corresponding callus cultures. Plant Science, Berlin 137(2), p 131-142.

Ben Ayed H. 1975. Un outil pour l’aménagement pastoral des zones arides: les collections et les vergers à graines de plantes fourragères à El Grin. Bull infor INRF (Tunisie), p 19, 1-9.

Bouda S. Haddioui A. 2010. Effet du stress salin sur la germination de quelques espèces du genre Atriplex. Université Maroc. (Marrakech et Sultan Moulay Slimane). Biotechnologie 79, p 72-73

Bouzid S. 2009. Etude de l’effet de la salinité et de la présence du molybdènes sur le comportement écophysiologique de deux variétés de plantes de l’espèce Phaseolus vulgaris L.  Mémoire   en vue de l’obtention du diplôme d’ingénieur d’état en Biologie végétale, Université Mantouri Constantine. Constantina, p 20-21 .

Fathi RA,  Prat  D. 1989. Effects of saline stress on Eucalyptus se edlings, Annuelle. Science. For. 46, 376–378.

Mahrouz F. 2013. Effet du stress salin sur la croissance et la composition chimique de l’Atriplex canescens. Diplôme D’Ingénieur d’Etat. Université Kasdi Merbah-Ouargla. Ouaregla, p 68.

Rezkallah CH, Ghemam AD. 2018. Comparison of the Germination of the Three Atriplex Species (Atriplex halimus, Atriplex nummularia, Atriplex canescens) by the Application of Different Doses of NaCl Salt. Internationale Journale of Science Methodologi. Human, 2018; 10(1), 8-16.

Related Articles

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.

Conservation and trade dynamics of non-timber forest products in local markets in south western Cameroon

Kato Samuel Namuene, Mojoko Fiona Mbella, Godswill Ntsomboh-Ntsefong, Eunice Waki, Hudjicarel Kiekeh, J. Biodiv. & Environ. Sci. 27(2), 58-69, August 2025.

Overemphasis on blue carbon leads to biodiversity loss: A case study on subsidence coastal wetlands in southwest Taiwan

Yih-Tsong Ueng, Feng-Jiau Lin, Ya-Wen Hsiao, Perng-Sheng Chen, Hsiao-Yun Chang, J. Biodiv. & Environ. Sci. 27(2), 46-57, August 2025.

An assessment of the current scenario of biodiversity in Ghana in the context of climate change

Patrick Aaniamenga Bowan, Francis Tuuli Gamuo Junior, J. Biodiv. & Environ. Sci. 27(2), 35-45, August 2025.

Entomofaunal diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivation systems within the cotton-growing zone of central Benin

Lionel Zadji, Roland Bocco, Mohamed Yaya, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, J. Biodiv. & Environ. Sci. 27(2), 21-34, August 2025.

Biogenic fabrication of biochar-functionalized iron oxide nanoparticles using Miscanthus sinensis for oxytetracycline removal and toxicological assessment

Meenakshi Sundaram Sharmila, Gurusamy, Annadurai, J. Biodiv. & Environ. Sci. 27(2), 10-20, August 2025.

Bacteriological analysis of selected fishes sold in wet markets in Tuguegarao city, Cagayan, Philippines

Lara Melissa G. Luis, Jay Andrea Vea D. Israel, Dorina D. Sabatin, Gina M. Zamora, Julius T. Capili, J. Biodiv. & Environ. Sci. 27(2), 1-9, August 2025.

Effect of different substrates on the domestication of Saba comorensis (Bojer) Pichon (Apocynaceae), a spontaneous plant used in agroforestry system

Claude Bernard Aké*1, Bi Irié Honoré Ta2, Adjo Annie Yvette Assalé1, Yao Sadaiou Sabas Barima1, J. Biodiv. & Environ. Sci. 27(1), 90-96, July 2025.