Naphthalene induced Biochemical changes in Anabas testudineus

Paper Details

Research Paper 01/02/2016
Views (561)
current_issue_feature_image
publication_file

Naphthalene induced Biochemical changes in Anabas testudineus

L. Patnaik, D. Raut, D. Panda, S. Nayak
J. Biodiv. & Environ. Sci. 8(2), 154-158, February 2016.
Copyright Statement: Copyright 2016; The Author(s).
License: CC BY-NC 4.0

Abstract

Pollution of aquatic ecosystems can be ascertained through the organisms residing in it. Biochemical changes in fish reflect the type of degradation occurring in living systems under the influence of any toxicant. Naphthalene is easily absorbed and distributed inside the body and is metabolized mainly by liver. Anabas testudineus was used as toxicity test organism to analyze various forms of damage. Basic water quality indices were checked before designing the bioassay test. Lethal concentration Of Naphthalene which killed 50% of Test animals (LC50) was determined after exposing the fish to varying concentrations for a period of 96 hours. The test specimen selected had average weight of 2-5gm and was procured from Central Institute of Freshwater Aquaculture (CIFA). After exposure to Naphthalene, the test organism showed major changes in the glycogen content, acetylcholine esterase, protein and adenosine triphosphate with increase in toxicant concentration. Constant decrease in the biochemical parameters indicates stress condition of Anabas testudineus.

APHA. 1985. Standard Methods for the Examination of Water and Wastewater. American Public Health Association. New York, USA. 16th ed.

Ellman GL, Courtney KD, Andres V, Feather S. 1961. A new and rapid Calorimetric determination of Acetyl Cholinesterase activity. Biochemical Pharmacology 7, 88-95.

Gravato C, Santos M. 2002. Juvenile sea bass liver P450, EROD induction, and erythrocytic genotoxic responses to PAH and PAH-like compounds. Ecotoxicology and Environmental Safety 51, 115–127.

Humason GL. 1972. Animal tissue Techniques.

Kabir Ahmed I, Sambasiva RKRS, Ramana RKV. l983. Dehydrogenase system of Tilapia mossambica under Sublethal malathion stress. Journal of Animal Morphology and Physiology 30, 101-106.

Klicpera M, Droahota Z, Zak R. 1957. Notes on the determination of muscle glycogen.

Latha KS. 2007. PhD Thesis Impact Of Latex And Plant Extract Of Calotropis Gigantea(L.) On Anabas Testudineus (Bloch) and the recovery of Latex Toxicity With Additive Nutrients.

Lowry OH, Rosenbough NJ, Farr AL, Randall RI. 1951.Protein measurement with Folin phenol reagent Journal of Biological Chemistry 193, 265-275.

Rao KJ, Murthy VSR. 1983. Hypoxia induced haemopoeitic tissue in Tilapia mossabica exposed to phosphomidon.Geo Bios 10, 204-207.

Takeo S, Sakanashi M. 1985. Characterization of membrane bound Adenosine Triphosphatase activity of enriched fraction from vascular smooth muscle. Enzyme 34, 152-165.

Tintos A, Gesto M, Miguez JM, Soengas JL. 2005. Naphthalene treatment alters liver intermediary metabolism and levels of steroid hormones in plasma of rainbow trout (Oncorhynchus mykiss). Ecotoxicology and Environmental Safety 66, (2007) 139–147. http://dx.doi.org/10.1016/j.ecoenv.2005.11.008.

Zayaprgassarazan Z, Anandan V. 1996. Effect of g-BHC on protein profiles of selected tissues of Anabas testudineus (Bloch). MPhil-Thesis, Pondicherry University,Pondicherry.

Related Articles

Agroforestry in woody-encroached Sub-Saharan savannas: Transforming ecological challenges into sustainable opportunities

Yao Anicet Gervais Kouamé, Pabo Quévin Oula, Kouamé Fulgence Koffi, Ollo Sib, Adama Bakayoko, Karidia Traoré, J. Biodiv. & Environ. Sci. 27(3), 10-22, September 2025.

Extreme rainfall variability and trends in the district of Ouedeme, municipality of Glazoue (Benin)

Koumassi Dègla Hervé, J. Biodiv. & Environ. Sci. 27(3), 1-9, September 2025.

Heterosis breeding, general and specific combining ability and stability studies in pearl millet: Current trends

Ram Avtar, Krishan Pal, Kavita Rani, Rohit Kumar Tiwari, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 117-124, August 2025.

Combining ability, heterosis and stability for yield and fibre quality traits in cotton: Breeding approaches and future prospects

Rohit Kumar Tiwari, Krishan Pal, R. P. Saharan, Ram Avtar, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 109-116, August 2025.

Bridging the COPD awareness gap in marginalized populations: Findings from a multicentre study in Khalilabad, Sant Kabir Nagar, Uttar Pradesh, India

Anupam Pati Tripathi, Jigyasa Pandey, Sakshi Singh, Smita Pathak, Dinesh Chaudhary, Alfiya Mashii, Farheen Fatima, J. Biodiv. & Environ. Sci. 27(2), 97-108, August 2025.

Antioxidant and anti-inflammatory activity of Pleurotus citrinopileatus Singer and Pleurotus sajor-caju (Fr.) Singer

P. Maheswari, P. Madhanraj, V. Ambikapathy, P. Prakash, A. Panneerselvam, J. Biodiv. & Environ. Sci. 27(2), 90-96, August 2025.

Mangrove abundance, diversity, and productivity in effluent-rich estuarine portion of Butuanon River, Mandaue City, Cebu

John Michael B. Genterolizo, Miguelito A. Ruelan, Laarlyn N. Abalos, Kathleen Kay M. Buendia, J. Biodiv. & Environ. Sci. 27(2), 77-89, August 2025.

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.