Production of bioplastics (PHB) using waste paper as feed stock by Cupriavidus taiwanensis

Paper Details

Research Paper 17/10/2025
Views (11)
current_issue_feature_image
publication_file

Production of bioplastics (PHB) using waste paper as feed stock by Cupriavidus taiwanensis

Ajeena Davis, Jini Joseph
Int. J. Biosci. 27(4), 130-139, October 2025.
Copyright Statement: Copyright 2025; The Author(s).
License: CC BY-NC 4.0

Abstract

Plastics are widely used for in variety of applications   in modern society. However, these synthetic polymers are not biodegradable and pose a global waste management challenge. Polyhydroxy butyrate (PHB) granule is a biodegradable and biocompatible plastic seen as intracellular reserve granules by many bacteria during adverse conditions. PHB has versatile properties like solubility in water, oxygen permeability, UV resistance, biocompatible etc. hence it is ideal for medical applications. Biopolymer producing bacteria was isolated from rhizosphere soil samples of leguminous plants. From the seven different bacterial were obtained from agricultural fields, the most efficient isolate was identified as Cupriavidus taiwanensis LMG 19424 by molecular characterisation. The target of the present work is the isolation and identification of microorganisms producing PHB from rhizosphere soil, chemical characterization of the PHB polymer and optimization of acid hydrolysis conditions for maximum production of PHB using waste paper as substrate. The high yield of bacterial cultures combined with its ability to grow in a range of environment make them the most versatile feedstock for plastic production. The bioplastics such as PHB can reduce the amount of plastic waste, and also helps in the efficient management of paper waste if they are used as a feedstock.

Al Azkawi AS, Sivakumar N, Al Bahry S. 2018. Bioprocessing of cardboard waste for cellulase production.  Biomass Conversion and Biorefinery. 8(3), 597-606. https://doi.org/10.1007/s13399-018-0309-7.

Al-Battashi H, Annamalai N, Al-Kindi S, Nair AS, Al-Bahry S, Verma JP, Sivakumar N. 2019. Production of bioplastic (poly-3-hydroxybutyrate) using waste paper as a feedstock: Optimization of enzymatic hydrolysis and fermentation employing Burkholderia sacchari. Journal of cleaner production 20(214), 236-247. https://doi.org/10.1016/j.jclepro.2018.12.239.

Aramvash A, Akbari Shahabi Z, Dashti Aghjeh S, Ghafari MD. 2015. Statistical physical and nutrient optimization of bioplastic polyhydroxybutyrate production by Cupriavidus necator. International Journal of Environmental Science and Technology 12,  2307-2316.

Barham PJ, Keller A, Otun EL, Holmes PA. 1984. Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. Journal of Materials Science 19(9), 2781-2794. https://doi.org/10.1007/BF01026954.

Bhuwal AK, Singh G, Aggarwal NK, Goyal V, Yadav A. 2013. Isolation and screening of polyhydroxyalkanoates producing bacteria from pulp, paper, and cardboard industry wastes. International journal of biomaterials 1, 752-821. https://doi.org/10.1155/2013/752821.

Dubey AK, Gupta PK, Garg N, Naithani S.2012. Bioethanol production from waste paper acid pretreated hydrolyzate with xylose fermenting Pichia stipitis.  Carbohydrate Polymers 88(3), 825-829. https://doi.org/10.1016/j.carbpol.2012.01.004.

Ertan F, Keskinler B, Tanriseven A. 2021. Exploration of Cupriavidus necator ATCC 25207 for the production of poly (3-hydroxybutyrate) using acid treated beet molasses.  Journal of Polymers and the Environment  29, 2111-2125. https://doi.org/10.1007/s10924-020-02020-2.

Franco-Duarte R, Černáková L, Kadam S, S. Kaushik K, Salehi B, Bevilacqua A, Corbo MR, Antolak H, Dybka-Stępień K, Leszczewicz M, Relison Tintino S. 2019. Advances in chemical and biological methods to identify microorganisms—from past to present. Microorganisms 7(5).130. https://doi.org/10.3390/microorganisms7050130.

Ghose TK, Bisaria VS. 1987. Measurement of hemicellulase activities: Part I Xylanases. Pure and Applied Chemistry 59(12), 1739-1751.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X. 2018 molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution 35(6), 1547-1549.

Lenihan P, Orozco A, O’Neill E, Ahmad MN, Rooney DW, Walker GM. 2010.  Dilute acid hydrolysis of lignocellulosic biomass. Chemical Engineering Journal 56(2), 395-403. https://doi.org/10.1016/j.cej.2009.10.061.

Narayanan M, Kandasamy S, Kumarasamy S, Gnanavel K, Ranganathan M, Kandasamy G. 2020. Screening of polyhydroxybutyrate producing indigenous bacteria from polluted lake soil. Heliyon 1(6). https://doi.org/10.1016/j.heliyon.2020.e05381.

Neelamegam A, Al-Battashi H, Al-Bahry S, Nallusamy S. 2018. Biorefinery production of poly-3-hydroxybutyrate using waste office paper hydrolysate as feedstock for microbial fermentation. Journal of biotechnology 265, 25-30. https://doi.org/10.1016/j.jbiotec.2017.11.002.

Nkwachukwu OI, Chima CH, Ikenna AO, Albert L. 2013.  Focus on potential environmental issues on plastic world towards a sustainable plastic recycling in developing countries. International Journal of Industrial Chemistry  4(1), 34.

Sabarinathan D, Chandrika SP, Venkatraman P, Easwaran M, Sureka CS, Preethi K. 2018.  Production of polyhydroxybutyrate (PHB) from Pseudomonas plecoglossicida and its application towards cancer detection. Informatics in Medicine Unlocked 1(11), 61-67. https://doi.org/10.1016/j.imu.2018.04.009.

Thapa C, Shakya P, Shrestha R, Pal S, Manandhar P. 2018. Isolation of polyhydroxybutyrate (PHB) producing bacteria, optimization of culture conditions for PHB production, extraction and characterization of PHB.  Nepal Journal of biotechnology 6(1), 62-68. https://doi.org/10.3126/njb.v6i1.22339.

Wei YH, Chen WC, Huang CK, Wu HS, Sun YM, Lo CW, Janarthanan OM. 2011. Screening and evaluation of polyhydroxybutyrate-producing strains from indigenous isolate Cupriavidus taiwanensis strains. International journal of molecular sciences 12(1), 252-65. https://doi.org/10.3390/ijms12010252.

Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of bacteriology 173(2), 697-703. https://doi.org/10.1128/jb.173.2.697-703.199

Related Articles

The protective effect of black pepper (Piper nigrum) on liver enzymes in streptozotocin-induced diabetic rats

Amani A. R. Filimban, Khulud A. Wathi, Int. J. Biosci. 27(4), 140-149, October 2025.

Gill ectoparasites of the mugilidae from the Ebrié lagoon, Abidjan (Côte d’Ivoire)

Eby Yoboué Gnamma Honorine Alla, Carel Wilfried Bermian Dibi-Ahui, Fidèle Kouassi Kouakou, Abouo Béatrice Adepo-Gourene, Int. J. Biosci. 27(4), 123-129, October 2025.

Impacts of diverse water management systems on growth and yield of two prominent boro rice cultivars in Bangladesh

Zahidul Islam, Md Ekhlasur Rahman, Md Khayrul Islam Bashar, Sharmin Sultana, Md Taharat Al Tauhid, Md Rabiul Islam, Md Shahed Hossain, Md Musa Mondal, Pradip Kumar Biswas, Int. J. Biosci. 27(4), 110-122, October 2025.

First record of Brachymeria excarinata Gahan, 1925 (Hymenoptera: Chalcididae) parasitizing Plutella xylostella (L.) (Lepidoptera: Plutellidae) in west Africa

Babacar Labou, Etienne Tendeng, El hadji Sérigne Sylla, Mamadou Diatte, Karamoko Diarra, Int. J. Biosci. 27(4), 104-109, October 2025.

Assessment of adsorption isotherms of three plantain flours (Musa paradisiaca L. var. Horn 1, FHIA 21 and PITA 3) and cassava flour (Manihot esculenta Crantz var. Bonoua 2)

Brou Koffi Siméon, Yue Bi Yao Clément, Kane Fako, Douali Gohi Bi Douali Jean-Sory, Tano Kablan, Int. J. Biosci. 27(4), 93-103, October 2025.

Exploring the antioxidant efficacy of boldine: A natural compound with broad-spectrum activity

Maharani Jaganathan, Kathiresan Suresh, Manickam John, Rajeswari Vasu, Theerthu Azhamuthu, Nihal Ahamed Abulkalam Asath, Ravichandran Pugazhendhi, Pratheeba Veerapandiyan, Int. J. Biosci. 27(4), 82-92, October 2025.

Assessment of genetic parameters and yield trait stability in sweet sorghum genotypes through AMMI and GGE biplot approaches

A. H. Inuwa, H. A. Ajeigbe, Y. Mustapha, B. S. Aliyu, I. I. Angarawai, Int. J. Biosci. 27(4), 69-81, October 2025.

Flammability of tropical grasses: Towards a functional ecology of fire in savannas

Kouamé Fulgence Koffi, Yao Anicet Gervais Kouamé, Tionhonkélé Drissa Soro, Koffi Prosper Kpangba, Int. J. Biosci. 27(4), 57-68, October 2025.