Semi-supervised ordered weighted average fuzzy-rough nearest neighbour classifier for cancer pattern classification from gene expression data

Paper Details

Research Paper 01/05/2022
Views (816)
current_issue_feature_image
publication_file

Semi-supervised ordered weighted average fuzzy-rough nearest neighbour classifier for cancer pattern classification from gene expression data

Ansuman Kumar, Anindya Halder
Int. J. Biosci. 20(5), 45-52, May 2022.
Copyright Statement: Copyright 2022; The Author(s).
License: CC BY-NC 4.0

Abstract

Classification of cancer patterns from gene expression data is a difficult task in computational biology and artificial intelligence due to the sufficient number of training samples is often difficult, expensive, and hard to gather. Although, the classification results obtained by the conventional classifiers trained with insufficient training samples are generally low. However, unlabeled samples are relatively low-cost and easy to gather, whereas conventional classifiers do not utilize these unlabeled samples to train the model. In this context, a self-training-based model semi-supervised ordered weighted average fuzzy-rough nearest neighbour classifier for cancer pattern classification from gene expression data is proposed. The experiments are carried out on eight publicly available real-life gene expression cancer datasets. The performance of the proposed method is compared with four other methods (two supervised and two semi-supervised) in terms of percentage accuracy, precision, recall, macro averaged F1 measure, micro averaged F1 measure and kappa. The dominance of the proposed method is justified by the experimental results.

Cohen J. 1960. A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20(1), 37–46. https://doi.org/10.1177/001316446002000104

Cornelis C, Verbiest N, Jensen R. 2010. Ordered Weighted Average Based Fuzzy Rough Sets. In: Yu et al. Ed. Lecture Notes in Computer Science, Springer, Berlin, Germany 6401, 78–85. https://doi.org /10.1007/978-3-642-16248-0_16

Dettling M. 2004. Bagboosting for tumor classification with gene expression data. Bioinformatics 20(18), 583–593. https://doi.org/10.1093/bioinformatics/bth447

Dettling M, Buhlmann P. 2003. Boosting for tumor classification with gene expression data. Bioinformatics 19(9), 1061–1069. https://doi.org/10.1093/bioinformatics/btf867

Du D, Li K, Li X, Fei M. 2014. A novel forward gene selection algorithm for microarray data. Neurocomputing 133, 446–458. https://dblp.org/rec/journals/ijon/DuLLF14

Halder A, Ghosh S, Ghosh A. 2013. Aggregation pheromone metaphor for semi-supervised classification, Pattern Recognition  46(8), 2239–2248. https://doi.org/10.1016/j.patcog.2013.01.002

Halder A, Misra S. 2014. Semi-supervised fuzzy k-NN for cancer classification from microarray gene expression data.In: Proceedings of the 1st International Conference on Automation, Control, Energy and Systems (IEEE Computer Society Press), 1–5. https://doi.org/10.1109/ACES.2014.6808013

Jensen R, Cornelis C. 2008. A new approach to fuzzy-rough nearest neighbour classification. In:Proceedings of the 6th International Conference on Rough Sets and Current Trends in Computing, 310–319. https://doi.org/10.1007/978-3-540-88425-5_32

Jiang D, Tang C, Zhang A. 2004. Cluster analysis for gene expression data: A survey. IEEE Transactions on Knowledge and Data Engineering 16 (11), 1370–1386. https://doi.org/10.1109/TKDE.2004.68

Keller JM, Gray MR, Givens JA. 1985. A fuzzy K-nearest neighbor algorithm, IEEE  Transactions on Systems, Man and Cybernetics 15(4),  580–585. https://doi.org/10.1109/TSMC.1985.6313426

Pawlak Z. 1982.  Rough sets. International Journal of Computer and Information Science 11(5), 341–356. https://doi.org/10.1007/BF01001956

Priscilla R, Swamynathan S. 2013. A  semi-supervised  hierarchical  approach:  two-dimensional  clustering  of  microarray  gene  expression  data. Frontiers  of  Computer Science 7(2), 204–213.  https://doi.org/10.1007/s11704-013-1076-z

Stekel D. 2003.Microarray Bioinformatics. 1st ed.,  Cambridge,  Cambridge University Press, UK. https://doi.org/10.1093/aob/mch083

Zadeh L. 1965. Fuzzy sets. Information and Control 8(3),  338–353. http://dx.doi.org/10.1016/S0019-9958(65)90241-X

Related Articles

Response of different soybean varieties to phosphorus fertilizer microdosing and rhizobium inoculation in the sub-humid zone of Northern Benin

Pierre G. Tovihoudji*, Kamarou-Dine Seydou, Lionel Zadji, Sissou Zakari, Valerien A. Zinsou, Int. J. Biosci. 27(6), 201-213, December 2025.

On-farm validation of black soldier fly larvae meal as a sustainable replacement for shrimp meal in rainbow trout diets in the mid hills of Nepal

Ishori Singh Mahato, Krishna Paudel*, Sunita Chand, Anshuka Bhattarai, Int. J. Biosci. 27(6), 189-200, December 2025.

Insect fauna associated with Cucumis sativus (Cucurbitales: Cucurbitaceae) in Parakou, A cotton-growing area of central Benin

Lionel Zadji*, Mohamed Yaya, Roland Bocco, Prudencia M. Tovignahoua, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, Hugues Baimey, Leonard Afouda, Int. J. Biosci. 27(6), 175-188, December 2025.

First record of two hymenopteran species, Brachymeria excarinata Gahan (Chalcididae) and Pteromalus sp. (Pteromalidae), as hyperparasitoids of Diadegma insulare in Senegal

Babacar Labou*, Etienne Tendeng, Mamadou Diatte, El hadji Sérigne Sylla, Karamoko Diarra, Int. J. Biosci. 27(6), 167-174, December 2025.

Hepatoprotective and antinociceptive effects of terpinolene in streptozotocin-induced diabetic peripheral neuropathic rats

Ravishankar Sarumathi, Muthukumaran Preethi, Chandrasekaran Sankaranarayanan*, Int. J. Biosci. 27(6), 156-166, December 2025.

Agromorphological characterization of six promising bambara groundnut [Vigna subterranea (L.) Verdc.] genotypes under selection in Burkina Faso

Adjima Ouoba*, Ali Lardia Bougma, Dominique Nikiéma, Mahamadi Hamed Ouédraogo, Nerbéwendé Sawadogo, Mahama Ouédraogo, Int. J. Biosci. 27(6), 145-155, December 2025.

Integrated in silico and in vitro analyses reveal E-cadherin crosstalk and TF: FVIIa complex-mediated trophoblast motility via MEK/JNK activation

Kirthika Manoharan, Jagadish Krishnan, Vijaya Anand Arumugam, Shenbagam Madhavan*, Int. J. Biosci. 27(6), 136-144, December 2025.

Effect of flooding depth and harvest intensity on soil moisture dynamics and production of baobab (Adansonia digitata) seedlings

Sissou Zakari, Pierre G. Tovihoudji, Mouiz W. I. A. Yessoufou, Sékaro Amamath Boukari, Vital Afouda, Imorou F. Ouorou Barrè, Int. J. Biosci. 27(6), 127-135, December 2025.