Semi-supervised ordered weighted average fuzzy-rough nearest neighbour classifier for cancer pattern classification from gene expression data

Paper Details

Research Paper 01/05/2022
Views (786)
current_issue_feature_image
publication_file

Semi-supervised ordered weighted average fuzzy-rough nearest neighbour classifier for cancer pattern classification from gene expression data

Ansuman Kumar, Anindya Halder
Int. J. Biosci. 20(5), 45-52, May 2022.
Copyright Statement: Copyright 2022; The Author(s).
License: CC BY-NC 4.0

Abstract

Classification of cancer patterns from gene expression data is a difficult task in computational biology and artificial intelligence due to the sufficient number of training samples is often difficult, expensive, and hard to gather. Although, the classification results obtained by the conventional classifiers trained with insufficient training samples are generally low. However, unlabeled samples are relatively low-cost and easy to gather, whereas conventional classifiers do not utilize these unlabeled samples to train the model. In this context, a self-training-based model semi-supervised ordered weighted average fuzzy-rough nearest neighbour classifier for cancer pattern classification from gene expression data is proposed. The experiments are carried out on eight publicly available real-life gene expression cancer datasets. The performance of the proposed method is compared with four other methods (two supervised and two semi-supervised) in terms of percentage accuracy, precision, recall, macro averaged F1 measure, micro averaged F1 measure and kappa. The dominance of the proposed method is justified by the experimental results.

Cohen J. 1960. A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20(1), 37–46. https://doi.org/10.1177/001316446002000104

Cornelis C, Verbiest N, Jensen R. 2010. Ordered Weighted Average Based Fuzzy Rough Sets. In: Yu et al. Ed. Lecture Notes in Computer Science, Springer, Berlin, Germany 6401, 78–85. https://doi.org /10.1007/978-3-642-16248-0_16

Dettling M. 2004. Bagboosting for tumor classification with gene expression data. Bioinformatics 20(18), 583–593. https://doi.org/10.1093/bioinformatics/bth447

Dettling M, Buhlmann P. 2003. Boosting for tumor classification with gene expression data. Bioinformatics 19(9), 1061–1069. https://doi.org/10.1093/bioinformatics/btf867

Du D, Li K, Li X, Fei M. 2014. A novel forward gene selection algorithm for microarray data. Neurocomputing 133, 446–458. https://dblp.org/rec/journals/ijon/DuLLF14

Halder A, Ghosh S, Ghosh A. 2013. Aggregation pheromone metaphor for semi-supervised classification, Pattern Recognition  46(8), 2239–2248. https://doi.org/10.1016/j.patcog.2013.01.002

Halder A, Misra S. 2014. Semi-supervised fuzzy k-NN for cancer classification from microarray gene expression data.In: Proceedings of the 1st International Conference on Automation, Control, Energy and Systems (IEEE Computer Society Press), 1–5. https://doi.org/10.1109/ACES.2014.6808013

Jensen R, Cornelis C. 2008. A new approach to fuzzy-rough nearest neighbour classification. In:Proceedings of the 6th International Conference on Rough Sets and Current Trends in Computing, 310–319. https://doi.org/10.1007/978-3-540-88425-5_32

Jiang D, Tang C, Zhang A. 2004. Cluster analysis for gene expression data: A survey. IEEE Transactions on Knowledge and Data Engineering 16 (11), 1370–1386. https://doi.org/10.1109/TKDE.2004.68

Keller JM, Gray MR, Givens JA. 1985. A fuzzy K-nearest neighbor algorithm, IEEE  Transactions on Systems, Man and Cybernetics 15(4),  580–585. https://doi.org/10.1109/TSMC.1985.6313426

Pawlak Z. 1982.  Rough sets. International Journal of Computer and Information Science 11(5), 341–356. https://doi.org/10.1007/BF01001956

Priscilla R, Swamynathan S. 2013. A  semi-supervised  hierarchical  approach:  two-dimensional  clustering  of  microarray  gene  expression  data. Frontiers  of  Computer Science 7(2), 204–213.  https://doi.org/10.1007/s11704-013-1076-z

Stekel D. 2003.Microarray Bioinformatics. 1st ed.,  Cambridge,  Cambridge University Press, UK. https://doi.org/10.1093/aob/mch083

Zadeh L. 1965. Fuzzy sets. Information and Control 8(3),  338–353. http://dx.doi.org/10.1016/S0019-9958(65)90241-X

Related Articles

The protective effect of black pepper (Piper nigrum) on liver enzymes in streptozotocin-induced diabetic rats

Amani A. R. Filimban, Khulud A. Wathi, Int. J. Biosci. 27(4), 140-149, October 2025.

Production of bioplastics (PHB) using waste paper as feed stock by Cupriavidus taiwanensis

Ajeena Davis, Jini Joseph, Int. J. Biosci. 27(4), 130-139, October 2025.

Gill ectoparasites of the mugilidae from the Ebrié lagoon, Abidjan (Côte d’Ivoire)

Eby Yoboué Gnamma Honorine Alla, Carel Wilfried Bermian Dibi-Ahui, Fidèle Kouassi Kouakou, Abouo Béatrice Adepo-Gourene, Int. J. Biosci. 27(4), 123-129, October 2025.

Impacts of diverse water management systems on growth and yield of two prominent boro rice cultivars in Bangladesh

Zahidul Islam, Md Ekhlasur Rahman, Md Khayrul Islam Bashar, Sharmin Sultana, Md Taharat Al Tauhid, Md Rabiul Islam, Md Shahed Hossain, Md Musa Mondal, Pradip Kumar Biswas, Int. J. Biosci. 27(4), 110-122, October 2025.

First record of Brachymeria excarinata Gahan, 1925 (Hymenoptera: Chalcididae) parasitizing Plutella xylostella (L.) (Lepidoptera: Plutellidae) in west Africa

Babacar Labou, Etienne Tendeng, El hadji Sérigne Sylla, Mamadou Diatte, Karamoko Diarra, Int. J. Biosci. 27(4), 104-109, October 2025.

Assessment of adsorption isotherms of three plantain flours (Musa paradisiaca L. var. Horn 1, FHIA 21 and PITA 3) and cassava flour (Manihot esculenta Crantz var. Bonoua 2)

Brou Koffi Siméon, Yue Bi Yao Clément, Kane Fako, Douali Gohi Bi Douali Jean-Sory, Tano Kablan, Int. J. Biosci. 27(4), 93-103, October 2025.

Exploring the antioxidant efficacy of boldine: A natural compound with broad-spectrum activity

Maharani Jaganathan, Kathiresan Suresh, Manickam John, Rajeswari Vasu, Theerthu Azhamuthu, Nihal Ahamed Abulkalam Asath, Ravichandran Pugazhendhi, Pratheeba Veerapandiyan, Int. J. Biosci. 27(4), 82-92, October 2025.

Assessment of genetic parameters and yield trait stability in sweet sorghum genotypes through AMMI and GGE biplot approaches

A. H. Inuwa, H. A. Ajeigbe, Y. Mustapha, B. S. Aliyu, I. I. Angarawai, Int. J. Biosci. 27(4), 69-81, October 2025.