Spatial variations of current forest structure and composition of mangrove forest in Biliran Island, Philippines

Paper Details

Research Paper 07/06/2023
Views (763)
current_issue_feature_image
publication_file

Spatial variations of current forest structure and composition of mangrove forest in Biliran Island, Philippines

Randy A. Villarin, Ruffy M. Rodrigo
J. Biodiv. & Environ. Sci. 22(6), 30-36, June 2023.
Copyright Statement: Copyright 2023; The Author(s).
License: CC BY-NC 4.0

Abstract

Mangrove forests are unique ecosystems that provide numerous ecological services, including carbon sequestration, biodiversity conservation, and coastal protection. However, more information is needed about the structure and composition of the Biliran Island mangrove forest in the Philippines. Basal area or diameter at breast height is a commonly used parameter for biomass estimation; we aimed to investigate the spatial variability of forest structure, including diameter at breast height and basal area and species composition. We found significant variations in forest structure and composition among different localities, likely due to natural and human-made disturbances. These findings provide a valuable baseline for understanding forest dynamics and informing future forest policies toward protecting and conserving essential mangrove ecosystems in the country. Furthermore, our study highlights the importance of understanding the structure and composition of mangrove forests for effective conservation and management. These results can help inform future research on carbon storage and sequestration in mangrove forests as blue carbon, as well as conservation and management strategies for these vital ecosystems.

Abino AC, Castillo JAA, Lee YJ. 2014. Assessment of species diversity, biomass, and carbon sequestration potential of a natural mangrove stand in Samar, the Philippines. Forest Science and Technology 10, 2-8.

Ali A, Yan ER. 2017. Functional identity of overstorey tree height and understorey conservative traits drive aboveground biomass in a subtropical forest. Ecological Indicators 83,158-168.

Alongi DM. 2002. Present state and future of the world’s mangrove forests. Environmental Conservation 29, 331-349.

Jusoff K, Taha D. 2008. Managing sustainable mangrove forests in Peninsular Malaysia. Journal of Sustainable Development 1, 88-96.

Naylor LA, Viles HA, Carter NEA. 2002. Biogeomorphology revisited: looking towards the future. Geomorphology 47, 3-14.

Odum WE, Johannes RE. 1975. The response of mangroves to man-induced environmental stress. Oceanography Series 12, 52-62.

Ogawa Y, Sadaba RB, Kanzaki M. 2022. Stand structure, biomass, and net primary productivity of planted and natural mangrove forests in Batan Bay Estuary, Philippines. Tropics 31, 1-9.

Pan Y, Birdsey RA, Phillips OL, Jackson RB. 2013. The structure, distribution, and biomass of the world’s forests. Annual Review of Ecology, Evolution, and Systematics 44, 593-622.

Primavera JH, Dela Cruz M, Montilijao C, Consunji H, Dela Paz M, Rollon RN, Maranan K, Samson MS, Blanco A. 2016. Preliminary assessment of post-Haiyan mangrove damage and short-term recovery in Eastern Samar, central Philippines. Marine Pollution Bulletin 109, 744-750.

Primavera JH. 1995. Mangroves and brackishwater pond culture in the Philippines. Hydrobiologia 295, 303-309.

Primavera JH. 2000. Development and conservation of Philippine mangroves: institutional issues. Ecological Economics 35, 91-106.

Quevedo JMD, Uchiyama Y, Kohsaka R. 2021. Local perceptions of blue carbon ecosystem infrastructures in Panay Island, Philippines. Coastal Engineering Journal 63, 227-247.

Salmo III SG, Malapit V, GarciamcA, Pagkalinawan HM. 2019. Establishing rates of carbon sequestration in mangroves from an earthquake uplift event. Biology Letters 15, 20180799.

Slik JWF, Aiba SI, Brearley FQ, Cannon CH, Forshed O, Kitayama K, Nagamasu H, Nilus R, Payne J, Paoli G, Poulsen AD. 2010. Environmental correlates of tree biomass, basal area, wood specific gravity, and stem density gradients in Borneo’s tropical forests. Global Ecology and Biogeography 19, 50-60.

Srikanth S, Lum SKY, Chen Z. 2016. Mangrove root: adaptations and ecological importance. Trees 30, 451-465.

Upadhyay RK. 2020. Markers for global climate change and its impact on social, biological and ecological systems: a review. American Journal of Climate Change 9, 159.

Walters BB, Rönnbäck P, Kovacs JM, Crona B, Hussain SA, Badola R, Primavera JH, Barbier E, Dahdouh-Guebas F. 2008. Ethnobiology, socio-economics, and management of mangrove forests: A review. Aquatic Botany 89, 220-236.

Wirth C, Schumacher J, Schulze ED. 2004. Generic biomass functions for Norway spruce in Central Europe-a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiology 24, 121-139.

Yachi S, Loreau M. 2007. Does complementary resource use enhance ecosystem functioning. A model of light competition in plant communities. Ecology Letters 10, 54-62.

Yuan Z, Wang S, Ali A, Gazol A, Ruiz-Benito P, Wang X, Lin F, Ye J, Haz Z, Loreau M. 2018. Aboveground carbon storage is driven by functional trait composition and stand structural attributes rather than biodiversity in temperate mixed forests recovering from disturbances. Annals of Forest Science 75, 1-13.

Related Articles

Antioxidant and anti-inflammatory activity of Pleurotus citrinopileatus Singer and Pleurotus sajor-caju (Fr.) Singer

P. Maheswari, P. Madhanraj, V. Ambikapathy, P. Prakash, A. Panneerselvam, J. Biodiv. & Environ. Sci. 27(2), 90-96, August 2025.

Mangrove abundance, diversity, and productivity in effluent-rich estuarine portion of Butuanon River, Mandaue City, Cebu

John Michael B. Genterolizo, Miguelito A. Ruelan, Laarlyn N. Abalos, Kathleen Kay M. Buendia, J. Biodiv. & Environ. Sci. 27(2), 77-89, August 2025.

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.

Conservation and trade dynamics of non-timber forest products in local markets in south western Cameroon

Kato Samuel Namuene, Mojoko Fiona Mbella, Godswill Ntsomboh-Ntsefong, Eunice Waki, Hudjicarel Kiekeh, J. Biodiv. & Environ. Sci. 27(2), 58-69, August 2025.

Overemphasis on blue carbon leads to biodiversity loss: A case study on subsidence coastal wetlands in southwest Taiwan

Yih-Tsong Ueng, Feng-Jiau Lin, Ya-Wen Hsiao, Perng-Sheng Chen, Hsiao-Yun Chang, J. Biodiv. & Environ. Sci. 27(2), 46-57, August 2025.

An assessment of the current scenario of biodiversity in Ghana in the context of climate change

Patrick Aaniamenga Bowan, Francis Tuuli Gamuo Junior, J. Biodiv. & Environ. Sci. 27(2), 35-45, August 2025.

Entomofaunal diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivation systems within the cotton-growing zone of central Benin

Lionel Zadji, Roland Bocco, Mohamed Yaya, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, J. Biodiv. & Environ. Sci. 27(2), 21-34, August 2025.

Biogenic fabrication of biochar-functionalized iron oxide nanoparticles using Miscanthus sinensis for oxytetracycline removal and toxicological assessment

Meenakshi Sundaram Sharmila, Gurusamy, Annadurai, J. Biodiv. & Environ. Sci. 27(2), 10-20, August 2025.