Stoichiometry of fish-phytoplankton interaction in fish ponds receiving local and industrial feed in the pre-growth phase
Paper Details
Stoichiometry of fish-phytoplankton interaction in fish ponds receiving local and industrial feed in the pre-growth phase
Abstract
The use of agricultural by-products could modify the stoichiometry of carbon (C), nitrogen (N) and phosphorus (P), leading to changes in the composition of phytoplankton and affecting the structure of fish. The aim of this study is to determine the stoichiometry of phytoplankton and fish using industrial and local feeds. Samples of Oreochromis niloticus fish and phytoplankton were collected from six pre-growth ponds. Two ponds were treated with feed (industrial and local) and two other ponds that received no feed were considered as controls. C, N and P contents were measured and their ratios were analysed to characterise the stoichiometry of phytoplankton and fish. The respective stoichiometric C/P, C/N, N/P ratios of phytoplankton (274.38; 8.31; 33.33) in ponds receiving local feed and control ponds (358.04; 8.75; 39.97) were higher than those in ponds receiving industrial feed (161.50; 6.43; 22.42). The same trend was observed in fish, with respective stoichiometric C/P, C/N and N/P ratios of 62.56; 4.86; 20.50 for fish fed with local feed, 46.86; 3.84; 12.76 for those fed with industrial feed and 74.13; 3.94; 18.62 for control fish. Correlation analysis showed that the weight of fish fed the industrial feed was significantly correlated with phosphorus and nitrogen in those fed the local feed and those not fed. These results show that the fish have the same nutrient and carbon compositions as those present in their environment.
Aboua C. 2016. Efficience des ressources et efficacité économique des fermes piscicoles au sud-est de la Côte d’Ivoire. MIPRAH, Côte d’Ivoire, 22p.
Agbohessi PT, Houndji AMB, Dégila BDD, Elègbè HA, Adouwekonou VMS, Pèlèbè ROE, Imorou Toko I. 2019. Utilisation des farines d’asticots, de poisson et des feuilles de Moringa oleifera comme sources de protéines alimentaires chez les larves de Clarias gariepinus (Burchell, 1822). Environnement et Sciences de l’Ingénieur 15, 1-23.
Amoussou TO. 2017. Caractérisation morphologique, génétique et zootechnique des populations naturelles de tilapias Oreochromis niloticus (Linnaeus, 1758) et Sarotherodon melanotheron Rüppell, 1852 du Sud du Bénin en vue de leur valorisation dans les systèmes piscicole. Thèse, Université d’Abomey-Calavi, Benin, 239 p.
Anougbo AB, Nobah C, Etile N’doua R, Atse BC, Goore BG. 2019. Effet de l’utilisation d’aliments composés locaux adaptés aux besoins de prégrossissement d’un silure, Clarias gariepinus (clarides) (Burchell, 1822) sur le peuplement zooplanctonique des étangs d’élevage. Agronomie Africaine 8, 1-9.
Boros G, Sály P, Vanni MJ. 2015. Ontogenetic variation in the body stoichiometry of two fish species. Oecologia 179, 329-341.
Brou KJ. 2020. Effets des régimes extrudés contenant du son de riz et du son de blé sur les performances de croissance du tilapia Oreochromis niloticus (Linnaeus, 1758) élevé en enclos. Afrique Science 17, 264-281.
Burgess S. 2018. Development in phytoplankton assemblages, ecological status and purification effect in Teglverksdammen: A study of a pond the first two growth seasons following deculverting of an urban stream system in Oslo, Norway. Thesis, University of Life Sciences, Norwegian, 97p.
Elser JJ, Fagan FW, Denno FR, Dobberfuhl RD, Folarin A, Huberty A, Interlandi S, Susan S, Kilham SS, McCauleyk E, Schulz LK, Siemann HE, Robert W. 2000. Nutritional constraints in terrestrial and freshwater food webs. Nature 408, 578-580.
Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LJ. 2000. Biological stoichiometry from genes to ecosystems. Ecology Letters 3, 540-550.
FAO. 2016. Organisation des nations unies pour l’agriculture. La situation mondiale de la pêche et de l’aquaculture. Italy, 241p.
FAO. 2018. La situation mondiale des pêches et de l’aquaculture 2018: Atteindre les objectifs de développement durable. Italy, 254 p.
Galbraith ED, Martiny AC. 2015. A simple nutrient-dependence mechanism for predicting the stoichiometry of marine ecosystems. Proceedings of the National Academy of Sciences 112, 8199-8204.
Gbai M, Ouattara N, Bamba Y, Ouattara M, Ouattara A, Yao K. 2018. Substitution of the fish meal by the earthworm and maggot meal in the feed of Nile tilapia Oreochromis niloticus reared in freshwater. International Journal of Fisheries and Aquaculture 10, 77-85.
Groga N. 2012. Structure, fonctionnement et dynamique du phytoplancton dans le lac de Taabo (Côte d’Ivoire). Thèse, Université de Toulouse, France, 224p
Guo XT, Liu F, Wang F. 2018. Stœchiométrie du carbone, de l’azote et du phosphore de trois poissons d’élevage d’eau douce en phase de croissance. Journal turc des sciences halieutiques et aquatiques 18, 239-245.
Higgins KA, Vanni MJ, González MJ. 2006. Detritivory and the stoichiometry of nutrient cycling by a dominant fish species in lakes of varying productivity. Oikos 114, 419-430.
Legendre L, Legendre P. 1979. Ecologie Numérique tome 2: la structure des données écologiques. Masson (Ed.), Collection d’écologie n°13, Paris, France, 247p.
McIntyre B, Flecker S. 2010. Ecological Stoichiometry as an Integrative Framework in Stream Fish Ecology. American Fisheries Society Symposium 73, 539-558.
Philippeau G. 1992. Comment interpréter les résultats d’une analyse en composantes principales. Service des Etudes Statistiques, 63p.
Prater CPC, Frost ET, Howell SB, Watson A, Zastepa SSE, King RJ, Vogt X, Xenopoulos MA. 2017. Variation in particulate C:N:P stoichiometry across the Lake Erie watershed from tributaries to its outflow: Lake Erie C:N:P stoichiometry. Limnology and Oceanography 62, S194-S206.
Soudijn F, Van de Wolfshaar K. 2021. The effects of nutrient run-off on fish productivity – considering the effects of stoichiometry. Wageningen Marine Research Report C003/21.
Stainton MP, Capel MJ, Armstrong FAJ. 1977. The chemical analysis of freshwater. Can. Fish. Mar. Serv. Misc. Spec. Publ., 25p.
Sterner RW, Andersen T, Elser JJ, Hessen DO, Hood JM, McCauley E, Urabe J. 2008. Scale-dependent carbon:nitrogen:phosphorus seston stoichiometry in marine and freshwaters. Limnology and Oceanography 53, 1169-1180.
Symons CC, Arnott ES, Sweetman NJ. 2012. Nutrient limitation of phytoplankton communities in Subarctic lakes and ponds in Wapusk National Park, Canada. Polar Biology 35, 481-489.
Tanioka T, Matsumoto K. 2020. A meta-analysis on environmental drivers of marine phytoplankton C:N:P. Biogeosciences 17, 2939–2954.
Yao AH, Koumi AR, Atse BC, Kouamelan EP. 2017. Etat des connaissances sur la pisciculture en Côte d’Ivoire. Agronomie Africaine 29, 227–244.
Kokora Yah Reine Marina, Netto Mireille Seu-Anoi, Diabagate Youssouf (2024), Stoichiometry of fish-phytoplankton interaction in fish ponds receiving local and industrial feed in the pre-growth phase; IJB, V25, N6, December, P338-345
https://innspub.net/stoichiometry-of-fish-phytoplankton-interaction-in-fish-ponds-receiving-local-and-industrial-feed-in-the-pre-growth-phase/
Copyright © 2024
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0