Utilization of Moringa oleifera seeds for treatment of canal and industrial waste water – an alternative sustainable solution for developing countries

Paper Details

Research Paper 01/07/2015
Views (578)
current_issue_feature_image
publication_file

Utilization of Moringa oleifera seeds for treatment of canal and industrial waste water – an alternative sustainable solution for developing countries

Farah Deeba, Naeem Abbas, Tahir Butt, Naz Imtiaz, Rauf Ahmed Khan
J. Biodiv. & Environ. Sci. 7(1), 54-60, July 2015.
Copyright Statement: Copyright 2015; The Author(s).
License: CC BY-NC 4.0

Abstract

Moringa oleifera is low cost, easily available and environmentally friendly natural coagulant. This research project was initiated to investigate the performance of Moringa oleifera compared with that of aluminum sulfate Al2 (SO4)3 and alum for treatment of canal water and industrial wastewater. The results of canal water with seed kernel and 0.15 g Alum was found to have maximum reduction in turbidity and microbial load. Treatment of arsenic samples (25, 50, 75. 100 ppb) the dose rate of 0.2 g of seed kernel with sieve size 125 µm was found efficient as compared to 250 and 500 µm sieve size. For industrial waste water samples maximum chromium removal was found with 0.05 seed kernel that is 718.9 mg/L to 53.85 mg/L which is 92.51 %. However other metal like Ni, Cu and Zn was also showed the best result with dose rate of 0.05 g for 100 mL wastewater. It is concluded from result that M. oleifera was not as effective as universal coagulant like alum, magnesium oxide, ferric oxide etc. that can be used for treatment of turbid waters in developing countries. The main reasons for using natural coagulants are low cost, easily available, having low health risk and environmental friendly.

Armand S, Basocak V, Pauly G, McCaulley J. 2003. M. oleifera: an interesting source of active ingred-ients for skin and hair care, SOFW-Journal 129, 45–52.

Barth H. 1982. Trinkwasserauf bereitungmit samenvon Moringa oleifera lam, Chemiker-Zeitung p.106.

Bolto B, Gregory J. 2007. Organic polyelectrolytes in water treatment. Water research 41, 2301-2324.

Dixit S, Ali H. 2010. Antioxidant potential some medicinal plants of central India. Journal of Cancer Therapy 1, 87–90.

Fuglie LJ. 2001. The Miracle Tree. The Multiple Attributes of M., Technical Centre for Agricultural and Rural Cooperation.

Ghebremichael K, Abaliwano J, Amy G. 2009. Combined natural organic and synthetic inorganic coagulants for surface water treatment. Journal of Water Supply: Research and Technology AQUA 58, 267–276.

Jahn SAA. 1986. Proper Use of African Natural Coagulants for Rural Water Supplies: Research in the Sudan and a Guide for New Projects. Eschborn, Fed. Rep. Germany, GTZ.

Jeyanthi GP, Bhuvaneswari V, Hemaprabha J. 2004. Quality evaluation of potable water on treatment with selected medicinal plant products. Indian Journal of Nutrition and Dietetics 41, 187–197.

Makkar HPS, Becker K. 1996. Nutritional value and antinutritional components of whole and ethanol extracted. Moringa oliefera. Animal Feed Science and Technology 63, 211–228.

Muyibi SA, Evison LM. 1996. Coagulation of turbid water and softening of hard water with M. oleifera seeds. International Journal of Environmental Studies 49, 247–259.

Narasiah KS, Vogel A, Kramadhati NN. 2002. Coagulation of turbid waters using M. oleifera seeds from two distinct sources. Water Supply 2, 83–88.

Ndabigengesere KS, Narasiah. 1998. Use of M. oleifera seeds as a primary coagulant in wastewater treatment, Environmental Technology 19, 789–800.

Nkurunziza T, Nduwayezu JB, Banadda EN, Nhapi I. 2009. The effect of turbidity levels and M. oleifera concentration on the effectiveness of coagulation in water treatment. Water Science and Technology 59, 1551–1558.

Pritchard M, Craven T, Mkandawire T, Edmondson AS, Neill JG. 2010. A comparison between Moringa oleifera and chemical coagulants in the purification of drinking water–An alternative sustainable solution for developing countries. Physics and Chemistry of the Earth, Parts A/B/C 35, 798-805.

Sciban M, Klasnja K, Antov M. 2009. Removal of water turbidity by natural coagulants obtained from chestnut and acorn. Bioresource technology 100, 6639-6643.

Standard Methods. 2005. Standard Methods for the Examination of Water and Wastewater, 21st edition, AWWA/APHA/WEF.

Related Articles

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.

Conservation and trade dynamics of non-timber forest products in local markets in south western Cameroon

Kato Samuel Namuene, Mojoko Fiona Mbella, Godswill Ntsomboh-Ntsefong, Eunice Waki, Hudjicarel Kiekeh, J. Biodiv. & Environ. Sci. 27(2), 58-69, August 2025.

Overemphasis on blue carbon leads to biodiversity loss: A case study on subsidence coastal wetlands in southwest Taiwan

Yih-Tsong Ueng, Feng-Jiau Lin, Ya-Wen Hsiao, Perng-Sheng Chen, Hsiao-Yun Chang, J. Biodiv. & Environ. Sci. 27(2), 46-57, August 2025.

An assessment of the current scenario of biodiversity in Ghana in the context of climate change

Patrick Aaniamenga Bowan, Francis Tuuli Gamuo Junior, J. Biodiv. & Environ. Sci. 27(2), 35-45, August 2025.

Entomofaunal diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivation systems within the cotton-growing zone of central Benin

Lionel Zadji, Roland Bocco, Mohamed Yaya, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, J. Biodiv. & Environ. Sci. 27(2), 21-34, August 2025.

Biogenic fabrication of biochar-functionalized iron oxide nanoparticles using Miscanthus sinensis for oxytetracycline removal and toxicological assessment

Meenakshi Sundaram Sharmila, Gurusamy, Annadurai, J. Biodiv. & Environ. Sci. 27(2), 10-20, August 2025.

Bacteriological analysis of selected fishes sold in wet markets in Tuguegarao city, Cagayan, Philippines

Lara Melissa G. Luis, Jay Andrea Vea D. Israel, Dorina D. Sabatin, Gina M. Zamora, Julius T. Capili, J. Biodiv. & Environ. Sci. 27(2), 1-9, August 2025.

Effect of different substrates on the domestication of Saba comorensis (Bojer) Pichon (Apocynaceae), a spontaneous plant used in agroforestry system

Claude Bernard Aké*1, Bi Irié Honoré Ta2, Adjo Annie Yvette Assalé1, Yao Sadaiou Sabas Barima1, J. Biodiv. & Environ. Sci. 27(1), 90-96, July 2025.