Study of the Probiotic Potentialities of Lactic Acid Bacteria isolated from Maize (Zea mays) in Côte d’Ivoire

Paper Details

Research Paper 01/06/2022
Views (709) Download (61)
current_issue_feature_image
publication_file

Study of the Probiotic Potentialities of Lactic Acid Bacteria isolated from Maize (Zea mays) in Côte d’Ivoire

N’Guessan Yévi Delphine, Bonny Aya Carole, Aké Moussan Désirée Francine, Assandi Kouamé Rivière, Koffi Djarys Michel
Int. J. Biosci.20( 6), 32-44, June 2022.
Certificate: IJB 2022 [Generate Certificate]

Abstract

The objective of this work is to evaluate the probiotic ability of lactic acid bacteria isolated from fermented maize (Zea mays) pulp in Côte d’Ivoire. To this end, selection criteria, namely antimicrobial activity, resistance to acidity and bile salts, self-aggregation, antibiogram and percentage of hydrophobicity, were carried out on fourteen lactic acid bacteria isolates (LAB). Seven isolates (T1.8; T1.9; T2.3; T2.7; T2.10; T3.1; T3.5) were able to inhibit the growth of Salmonella enterica O:8, Escherichia Coli and Staphylococcus aureus, with diameters ranging from 1.1 ± 0.14 to 31.75±2.3 mm. Two isolates (T1.9 and T2.7) showed growth at pH 2 (2.01% ± 0.6 and 3.24% ± 0.1). Isolates T3.4 and T3.5 showed growth (86.17± 0.05%) at 0.3% bile salts. Of all the antibiotics tested, Chloramphenicol was inactive on the isolates tested. However, isolates T3.5, T3.6, T1.4 and T0.5 showed sensitivity to Amoxicillin. As for surface hydrophobicity, a growth rate of 0.6% phenol was observed in isolate T1.9 (71.87 ± 0.06). The maximum rate of self-aggregation (77.35%) was observed in isolate T3.4. In sum, isolates T3.1, T3.7 and T3.4, selected as potential probiotics via the PHEAPMAP software, and revealed by the MalditoF test as belonging to the genera Lactobacillus (Lactobactillus fermentum), could be used to improve maize-based foods.

VIEWS 92

Ashraf R, Shah N. 2011. Antibiotic resistance of probiotic organisms and safety of probiotic dairy products, Review article. International Food Research Journal 18(3), 837-853.

Bakari D, Tatsadjieu NL, Mbawala A, Mbofung CM. 2011.  Assessment of physiological properties of some lactic acid bacteria isolated from the intestine of chickens use as probiotics and antimicrobial agents against enteropathogenic bacteria. Innovative Romanian Food Biotechnology 8, 33-40.

Behira B. 2012. Contribution à l’étude des espèces de lactobacilles à caractère probiotique isolées de la poule domestique (Gallus gallus domesticus) de l’ouest Algérien, Thèse pour l’obtention du diplôme de Doctorat, faculté des sciences, Département de Biologie- option microbiologie alimentaire, Université d’Oran (Algérie), 24-93.

Belarbi F. 2011. Isolement et sélection des souches de bactéries lactiques productrices des métabolites antibactériennes, Mémoire de magistère, faculté des sciences, Département de Biologie- option microbiologie alimentaire et industrielles. Université d’Oran Senia, (Algérie), 98-102.

Bielecka M, Babuchowski A, Boutard A, Dubeau H. 1993. Les probiotiques, Revue canadienne de microbiologie 12, 1089-1095.

Boone PS, Charles JD, Wanzie LR. 2008. Évaluation sous régionale de la chaîne de valeurs du maïs, rapport technique, ATP n°1. Bethesda, MD : Projet ATP, Abt Associates Inc. 12515. May 29.  Review, 329-348.

Boudouhi R, Ferreira C, Morel E, Szymanski A, Tizaoui S. 2005. Aliments fonctionnels « Réalité et/ou allégation », mémoire de these de doctorat, Université Lille 1, Sciences et Technologies Lille (France), 154-202.

Boukhalfi F. 2020. Contribution à l’évaluation de quelques caractères probiotiques et technologiques Du Bifidobactérie isolées à partir des selles de nourrissons et lait maternel ; Mémoire de master ; Université Mohamed Khider de Biskra Faculté des sciences exactes et sciences de la nature et de la vie, Département des sciences de la nature et de la vie, Biskra (Algérie), 38-79.

Bruno E. 2012. Sélection de bactéries probiotiques et amélioration de la survie et de la fonctionnalité d’une bactérie modèle, Bifidobacterium bifidum, par modification du potentiel d’oxydoréduction par bullage de gaz. Mémoire de master, Université de Bourgogne, Dijon (France), 33-76.

Bruns HA, Abbas HK. 2005. Réponses of short-season corn hybrids to a humid subtropical environment. Agronomy Journal 97 (2), 446-451. http://dx.doi.org/10.2134/agroj2005.0446

CASFM. 2019. Comite comité de l’antibiogramme   de la société Française de Microbiologie recommandation 1(0), 225-144.

Cromwell GL, Calvert C, Cline TR, Crenshaw JD, Crenshaw TD, Easter RA, Ewan RC, Hamilton CR, Hill GM, Lewis AJ, Mahan DC, Miller ER, Nelssen JL, Pettigrew JE, Tribble LF, Veum TL, Yen JT. 1999. Variability among sources and laboratories in nutrient analyses of corn and soybean meal. Journal of Animal Science 77(12), 3262-3273.

Demont M. 1997. Système de commercialisation des produits vivriers en Côte d’Ivoire : Étude pour le maïs (Zea mays) et l’arachide (Arachis hypogaea)”. Rapport Technique Institut Des Savanes, Côte d’Ivoire, 22-58.

Ehrmann MA, Kurzak P, Bauer J, Vogel RF. 2002. Characterization of lactobacilli towards their use as probiotic adjunts in poultry. Journal of Applied Microbiology 92, 966-975. http://dx.doi.org/10.10.1046/j.13652672.2002.01608.x

FAO/WHO. 1973. Aliments diététiques ou de régime (y compris les aliments destinés aux nourrissons et enfants en bas âge). Programme mixte sur les normes alimentaires. Commission du Codex Alimentarius. Rome 4, 11-14.

Georgalaki MD, Paganelli M, Anastasiou R, Kalantzopoulos G, Tsakalidou E. 2002. Purification and characterization of the X-prolyl-dipeptidyl aminopeptidase (PepX) from Streptococcus macedonicus and cloning of the pepX gene. Dairy Science &Technology 82(6), 657–671. http://dx.doi.org/10.1051/lait:2002040

Gusils C, Oppezzo RP, Gonzalez S. 2003. Adhesion of probiotic lactobacilli to chick intestinal mucus. Canadian Journal of Microbiology 49(7), 472-478. http://dx.doi.org/10.1139/w03-055

Hyung JK, Quinn BC, Madon T, Steve L. 2006. Graduate Student Mental Health: Needs Assessment and Utilization of Counseling Services. Journal of College Soudent Development 47(3), 244 -266.

Kim EY, Kim YH, Rhee MH, Song JC, Lee KW, Kim SC. 2007. Selection of Lactobacillus sp. PSC101 that produces active dietary enzymes such as amylase, lipase,  phytase and protease in pigs. The Journal of General and Applied Microbiology 53(2), 111-117. http://dx.doi.org/10.2323/jgam.53.111

Klaenhammer TR. 2000. Probiotic Bacteria: Today and Tomorrow. Journal of Nutrition 130(2s Suppl), 415–416. http://dx.doi.org/10.1093/jn/130.2.415S

Kullisaar T, Songisepp E, Aunapuu M, Kilk K, Arend A, Mikelsaar M, Rehema A, Zilmer M. 2010. Complete glutathione system in probiotic Lactobacillus fermentum ME-3. Appl Biochem Microbiol 46481–486. https://doi.org/10.1134/S0003683810050030

Marika M, Mihkel Z. 2009. Lactobacillus fermentum ME-3 – an antimicrobial and antioxidative probiotic, Microbial Ecology in Health and Disease 21(1), 1-27. https://doi.org/10.1080/08910600902815561

Moser S, Savage DC. 2001. Bile salt hydrolase activity and resistance to toxicity of conjugated bile salts are unrelated properties in lactobacilli. Applied Environment and Microbiology 67, 3476-3480. http://dx.doi.org/10.1128/AEM.67.8.34763480.2001

Nago CM. 1997. La transformation traditionnelle du mais au Bénin : Détermination des caractéristiques physico-chimiques des variétés en usage, relation avec l’obtention et la qualité des principaux produits dérivés, Thèse de Doctorat d’Etat es, Université Paris-7, Deris Diderot, Paris (France), 5-201.

Ogunbanwo ST, Sanni Al, Omilude AA. 2003. Characterization of lactobacilli in cheese. Journal of dairy research 25, 431-438.

Psomas EL, Andrighetto C, Litopoulou TE, Lombardi A, Tzanetakis N. 2001. Some probiotic properties of yeast isolates from infant faeces and feta cheese. International Journal Food Microbiology 69, 125-133. http://dx.doi.org/10.1016/s0168-1605(01)00580-3

Simons LA, Amansec SG,  Conway P. 2006. Effect of Lactobacillus fermentum on serum lipids in subjects with elevated serum cholesterol. Nutrition Metabolism and Cardiovascular Diseases 16(8), 531-535. https://doi.org/10.1016/j.numecd.2005.10.009

Taheri HR, Moravej H, Tabandeh F, Zaghari M, Shivazad M. 2009. Screening of lactic acid bacteria toward their selection as à source of chicken probiotic. Poultry Sciences 88, 1586-1593. http://dx.doi.org/10.3382/ps.2009-00041

Yobouet KS. 2020. Approche de lutte biologique contre les mycotoxines contaminant le maïs (Zea mays) par le criblage de bactéries lactiques à activité antifongique, Mémoire Présenté pour l’obtention du Diplôme de Master de Biotechnologies- Biosécurité -Bioressources de L’Université Félix HOUPHOUET- BOIGNY, Abidjan (Côte d’Ivoire), 12-50.

Van Tassell ML, Miller MJ. 2011, Lactobacillus adhesion to Mucus, Nutrient 3, 613-636. http://dx.doi.10.3390/nu3050613

Zhou JS, Pillidgec CJ, Gopal PK, Gill HS. 2005. Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains. International Journal of Food Microbiology 98(2), 211- 217. http://dx.doi.org/10.1016/j.ijfoodmicro.2004.05.011

Zuo L, Zhou T, Pannell BK, Ziegler AC, Best TM. 2015. Biological and physiological role of reactive oxygen species- the good, the bad and the ugly. Acta Physiology (Oxf), 214329-348. http://dx.doi.org/10.1111/apha.12515