Phenols compounds and antioxidant activity of five medicinal plants acclimated in Burkina Faso

Paper Details

Research Paper 07/12/2022
Views (779) Download (89)
current_issue_feature_image
publication_file

Phenols compounds and antioxidant activity of five medicinal plants acclimated in Burkina Faso

Ouattara Lamoussa Paul, Maiga Idrissa, Bationo K. Rémy, Bazie B. Valérie, Zongo Cheikna, Savadogo Aly, Nebie CH Roger
Int. J. Biosci.21( 6), 348-358, December 2022.
Certificate: IJB 2022 [Generate Certificate]

Abstract

The objective of this study was to contribute to a better knowledge of the medicinal flora by evaluating the antioxidant potential of extracts of five medicinal plants acclimatized in Burkina Faso. A phytochemical screening was performed by using the tests tube and thin chromatography methods. The content of phenolic compounds was evaluated by techniques using the Folin ciocalteu reagent. The antioxidant activity of extracts was assessed using 2, 2-azinobis-3-ethylbenzothiaz oline-6-sulfonic acid (ABTS), Ferric Reducing Antioxidant Power (FRAP) and 2-2-Diphenyl-1-Picrylhydrazyl (DPPH) methods. The results showed that chemical compounds such as tannins, flavonoids and saponosides were present in most methanolic extracts. The determination of phenolic compounds showed that the methanol extract of E. camaldulensis contains the highest content (68.62 mg EAG/g extract). The antioxidant activity of the studied plants varies from one extract to another depending on the method used. The methanol extract of H. suaveolens showed the highest antioxidant content using the FRAP method (54.41 TEQ/g extract), while the methanol extract of E. camaldulensis recorded the highest antioxidant contents by ABTS and DPPH methods (28.99 ± 0.17 and 30.74 mg TE/g extract respectively). In addition, the methanol extract of E. camaldulensis exhibited very high antioxidant activity with an antioxidant activity index of 45.97. These plants are potential sources of natural antioxidant. In perspectives, the compounds responsible for the antioxidant activity will be isolated and their structure elucidated.

VIEWS 165

Abedinia A. 2013. Evaluation biologique et phytochimique des substances naturellesd’ Hyptis atrorubens Poit. (Lamiaceae), sélectionnée par un criblage d’extraits de 42 plantes. Thèse de doctorat, Université du Droit et de la Santé – Lille II. 211 p.

Andersen ØM, Markham KR. 2005. Flavonoids: Chemistry, biochemistry and applications, 1st ed, Flavonoids: Chemistry, Biochemistry and Applications. CRC Press. DOI: https://doi.org/ 10.1201 /9781420039443

BANGOU M. J., 2012. Etude phytochimique et activités biologiques des tiges feuillées de Lantana camara L. et de Lippia chevalieri Moldenke : deux Verbenaceae du Burkina Faso. Thèse de doctorat, Université de Ouagadougou. 199 p.

Benzie IFF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal. Biochem. 239:70-76. DOI: 10.1006/abio.1996.0292

Bilušić Vundać V, Brantner AH, Plazibat M. 2007. Content of polyphenolic constituents and antioxidant activity of some Stachys taxa. Food Chem. 104, 1277-1281. DOI: 10.1016/j.foodchem. 2007.01.036

Borokini TI, Ayodele AE. 2012. Phytochemical Screening of Tacca leontopetaloides (L.) Kuntze Collected from Four Geographical Locations in Nigeria. Int. J. M odern Bot 2, 97-102.

Bruneton J. 2006. Pharmacognosie : Phytochimie, plantes médicinales Télécharger, Lire PDF. Tropicultura 24

Chuku A, Ogbonna A, Obande G, Namang M, Ahmad I. 2016. Antimicrobial Effects of Leaves of Eucalyptus camaldulensis on Some Microbial Pathogens. European J. Med. Plants 14, 1-8.DOI: https://doi.org/10.9734/ejmp/2016/25759

Ciulei. 1982. Practical manuals on the industrial utilization of chemical and aromatic plants. In Methodology for Analysis of Vegetable Drugs, 1st ed. Bucarest Faculty of Pharmacy. 61 p.

Dabire CM, Bationo RK, Hema A, Nebie RCH, Pale E, Dhanabal SP, Nacro M. 2015. Total phenolics content, flavonoids profiling and antioxidant activity of Lippia multiflora leaves extracts from Burkina Faso. Asian J. Plant Sci. Res. 5, 28-33

Djeridane A, Yousfi M, Brunel JM, Stocker P. 2010. Isolation and characterization of a new steroid derivative as a powerful antioxidant from Cleome arabica in screening the in vitro antioxidant capacity of 18 Algerian medicinal plants. Food Chem. Toxicol 48, 2599-2606. DOI: https://doi.org/10.1016 /j.fct.2010.06.028

Dudonné S, Vitrac X, Coutiére P, Woillez M, Mérillon JM. 2009. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem 57, 1768-1774. DOI: https://doi.org/ 10.1021/jf803011r

Ebrahimzadeh SK, Navidshad B, Farhoomand P, Aghjehgheshlagh FM. 2018. Effects of grape pomace and vitamin E on performance, antioxidant status, immune response, gut morphology and histopathological responses in broiler chickens. South African J. Anim. Sci 48, 324-336. DOI: https:// doi.org /10.4314/sajas.v48i2.13

Falleh H, Ksouri R, Chaieb K, Karray-Bouraoui N, Trabelsi N, Boulaaba M, Abdelly C. 2008. Phenolic composition of Cynara cardunculus L. organs, and their biological activities. Comptes Rendus – Biol 331, 372-379.

Gao M, Liu CZ. 2005. Comparison of techniques for the extraction of flavonoids from cultured cells of Saussurea medusa Maxim. World J. Microbiol. Biotechnol 21, 1461-1463. DOI: https://doi.org /10.1007 /s11274-005-6809-1

Gebashe F, Aremu AO, Van Staden J, Gruz J, Finnie JF. 2020. Phytochemical profiles and antioxidant activity of grasses used in South African traditional medicine. Plants 9, 371. DOI: https:// doi.org /10.3390 /plants9030371

Hermes-Lima M. 2005. Oxygen in Biology and Biochemistry: Role of Free Radicals, in: Functional Metabolism. DOI: https://doi.org /10.1002

Karacabey E, Bayindirli L, Artik N, Mazza G. 2013. Modeling solid-liquid extraction kinetics of trans-resveratrol and trans-ε-viniferin from grape cane. J. Food Process Eng 36, 103-112. DOI: 10.1111/j.1745-4530.2011.00660.x

Kicel A, Michel P, Owczarek A, Marchelak A, Zyzelewicz D, Budryn G, Oracz J, Anna Olszewska M. 2016. Phenolic profile and antioxidant potential of leaves from selected Cotoneaster Medik. species. Molecules 21. DOI: https://doi.org/10.3390/molecules21060688

Kone D. 2009. Etude de la phytochimie et des activités larvicide, anticholinestérasique et antioxydante des extraits de quatre plantes du Mali: Acacia nilotica Guill. et Perr. (Mimosaceae), Calotropis procera (Ait.) Ait. f. (Asclepiadaceae), Euphorbia sudanica A. Chev. Thèse de Doctorat, Université de Bamako. 123 p.

Lafka TI, Lazou AE, Sinanoglou VJ, Lazos ES. 2013. Phenolic extracts from wild olive leaves and their potential as edible oils antioxidants. Foods 2, 18-31. DOI: https://doi.org/10.3390/foods2010018

Landoulsi A. 2018. Etude chimiotaxonomique et activités biologiques des métabolites secondaires des plantes du genre Eryngium. Université du Droit et de la Santé- Lille. 248 p.

Liu Z, Yang L. 2018. Antisolvent precipitation for the preparation of high polymeric procyanidin nanoparticles under ultrasonication and evaluation of their antioxidant activity in vitro. Ultrason. Sonochem 43, 208-218. DOI: 10.1016 /j.ul tsonch. 2018.01.019

Meksem N. 2018. . Etude de l’effet biopesticide des extraits naturels de deux plantes de la famille des Myrtacées : Eucalyptus globulus, Eucalyptus camaldulensis. Thèse de Doctorat, Université Badji Mokhtar – Annaba. 172 p.

Miller NJ, Rice-Evans C, Davies MJ, Gopinathan V, Milner A. 1993. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 84, 407-412. DOI: https://doi.org /10.1042/cs0840407

Osama AN. 2018. Effet des conditions environnementales sur les caractéristiques morpho-physiologiques et la teneur en métabolites secondaires chez Inula montana: une plante de la médecine traditionnelle Provençale. Thèse de Doctorat, Université d’Avignon. 179 p.

Pachaly P. 1997. Plant Drug Analysis A Thin Layer Chromatography Atlas. Von H. Wagner und S. Bladt, 2. Auflage, Springer Verlag Berlin, Heidelberg, New York 1996, 184 farb. Abb. von V. Rickl, XVI, 384 S., DM 298,-, ISBN 3-540-58676-8. Pharm. Unserer Zeit 26, 166-167. DOI: 10.1002/pauz.19970260314

Pajares M, Cuadrado A, Engedal N, Jirsova Z, Cahova M. 2018. The role of free radicals in autophagy regulation: Implications for ageing. Oxid. Med. Cell. Longev. DOI: https://doi.org/10.1155 /2018/2450748

Prior RL, Wu X, Schaich K. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 53, 4290–4302. DOI: https://doi.org/10.1021/jf0502698

Sahgal G, Ramanathan S, Sasidharan S, Mordi MN, Ismail S, Mansor SM. 2009. In vitro antioxidant and xanthine oxidase inhibitory activities of methanolic Swietenia mahagoni seed extracts. Molecules 14, 4476-4485. DOI: https://doi.org/10.3390/molecules14114476

Scherer R, Godoy H. 2009. Antioxidant activity index (AAI) by the 2,2-diphenyl-l-picrylhydrazyl method. Food Chem 112, 654-658

Turkmen N, Velioglu YS, Sari F, Polat G. 2007. Effect of extraction conditions on measured total polyphenol contents and antioxidant and antibacterial activities of black tea. Molecules 12, 484-496. DOI: https://doi.org/10.3390/12030484

Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64, 555-559. DOI: 10.1016/S0308-8146(98)00102-2