A comparative evaluation of soil pH of different land use classes from district Gilgit, Pakistan

Paper Details

Research Paper 01/07/2016
Views (1218)
current_issue_feature_image
publication_file

A comparative evaluation of soil pH of different land use classes from district Gilgit, Pakistan

Gul Sanam, Erum Abbas, Farhana, Aliya Jabeen, Tika Khan
J. Biodiv. & Environ. Sci. 9(1), 376-380, July 2016.
Copyright Statement: Copyright 2016; The Author(s).
License: CC BY-NC 4.0

Abstract

Soil pH is an important factor for desirable crop productions. However, due to soil amendments it is changing and negatively impacting on agricultural produce and production. A total of 162 samples tested from three different land use classes (agriculture, barren and commercial) collected from four valleys of district Gilgit in Gilgit-Baltistan province of Pakistan. Different valleys and land use classes surveyed revealed a differential scope of pH level. However, in general entire soils are alkaline and pH ranges from 8.35 – 9.03 (average 8.65). Similarly, agriculture and barren lands in Gilgit town, Danyor and Sultanabad show relatively close affinity (average 8.52 and 8.62 respectively) as compared to Oshikhandas (average 9.02 and 9.03). Continuous unplanned use of chemical fertilizers and commercial wastes are continuously influence soil pH in the area which need a regular follow-up by the Government agriculture department. At the moments, farmers are totally ignorant about soil health status and such a technique or facility to monitor these parameters to optimize their agricultural productivity. Present study provides a baseline for future studies and caution for relevant departments to look into issues related to soil health. Study is unique and conducted for the first time from the area.

Anonymous. 2013. Soil. The Encyclopedia of Earth. Retrieved from Website. Retrieved from http://www. eoearth.org/view/article/156081/ on February 2016.

Anonymous. 2016a. Soil pH for Field Crops. Cornell University Cooperative Extension. Retrieved from Website retrieved from http://www.nnyagdev .org/PDF /SoilpH.pdf on 22nd February 2016.

Anonymous. 2015b. Soil. Wikipedia, the free encyclopedia. Retrieved from Website retrieved from https://en.wikipedia.org/ wiki/Soil on February 2016.

Hussain E, Khan B, Lencioni V, Mumtaz S, Ali F. 2012. Stream macro-invertebrate assemblages in the Bagrot Valley of Central Karakoram National Park, Pakistan. Records Zoological Survey of Pakistan 21, 60-64.

Mullen R. 2004. Soil pH and Nutrient Availability. C.O.R.N Newsletter No. 2004-24, Agriculture and Natural Resources, OSU Extension, ATI, OARDC, College of Food, Agriculture, and Environmental Sciences, Ohio State USA.

Schulte EE,Walsh LM, Kelling KA, Bundy LM, Bland WL, Wolkowki RP, Sturgul SJ. 2005. Management of Wisconsin soils. Soil acidity and liming. Fifth Edition 49-51.

Williston HL, La Fayette R. 1978. Species suitab-ility and pH of soils in southern forests. USDA Forest Service. Southeastern Area, state and Private Forestry. Forest Management Bulletin 4p.

Zain FO. 2010. A Socio-Political Study of Gilgit Baltistan Province. Pakistan Journal of Social Sciences (PJSS). Vol 30, No. 1, 181-190.

Related Articles

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.

Conservation and trade dynamics of non-timber forest products in local markets in south western Cameroon

Kato Samuel Namuene, Mojoko Fiona Mbella, Godswill Ntsomboh-Ntsefong, Eunice Waki, Hudjicarel Kiekeh, J. Biodiv. & Environ. Sci. 27(2), 58-69, August 2025.

Overemphasis on blue carbon leads to biodiversity loss: A case study on subsidence coastal wetlands in southwest Taiwan

Yih-Tsong Ueng, Feng-Jiau Lin, Ya-Wen Hsiao, Perng-Sheng Chen, Hsiao-Yun Chang, J. Biodiv. & Environ. Sci. 27(2), 46-57, August 2025.

An assessment of the current scenario of biodiversity in Ghana in the context of climate change

Patrick Aaniamenga Bowan, Francis Tuuli Gamuo Junior, J. Biodiv. & Environ. Sci. 27(2), 35-45, August 2025.

Entomofaunal diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivation systems within the cotton-growing zone of central Benin

Lionel Zadji, Roland Bocco, Mohamed Yaya, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, J. Biodiv. & Environ. Sci. 27(2), 21-34, August 2025.

Biogenic fabrication of biochar-functionalized iron oxide nanoparticles using Miscanthus sinensis for oxytetracycline removal and toxicological assessment

Meenakshi Sundaram Sharmila, Gurusamy, Annadurai, J. Biodiv. & Environ. Sci. 27(2), 10-20, August 2025.

Bacteriological analysis of selected fishes sold in wet markets in Tuguegarao city, Cagayan, Philippines

Lara Melissa G. Luis, Jay Andrea Vea D. Israel, Dorina D. Sabatin, Gina M. Zamora, Julius T. Capili, J. Biodiv. & Environ. Sci. 27(2), 1-9, August 2025.

Effect of different substrates on the domestication of Saba comorensis (Bojer) Pichon (Apocynaceae), a spontaneous plant used in agroforestry system

Claude Bernard Aké*1, Bi Irié Honoré Ta2, Adjo Annie Yvette Assalé1, Yao Sadaiou Sabas Barima1, J. Biodiv. & Environ. Sci. 27(1), 90-96, July 2025.