Oxymatrine degradation in cucumber fruit, leaves, and soil in Iraq

Paper Details

Research Paper 01/10/2018
Views (662)
current_issue_feature_image
publication_file

Oxymatrine degradation in cucumber fruit, leaves, and soil in Iraq

Hussain A. Hussain, Abdul kareem Jawad Ali, Saleh Hassan Sumir
J. Biodiv. & Environ. Sci. 13(4), 38-44, October 2018.
Copyright Statement: Copyright 2018; The Author(s).
License: CC BY-NC 4.0

Abstract

This experiment was conducted in the National Centre for Pesticides Control (NCPC)/Ministry of Agriculture during winter season 2017-2018 Toknow the degredation of Oxymatrine in cucumber fruit ,leaves and soil in greenhouse and the period of this degradation  and pre harvest interval for consumers and to know the range of appropriateness the new method of extraction with cucumber, the High performances Liquid Chromatography (HPLC) was employed as analyses equipment and QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) approaches as extraction method. The obtained results were showed that Oxymatrine in cucumber fruit, leaves, and green house  soil  degradation was acquired in 5th, 7th, and 2th day respectively after the treatment ,then the hplc system did not detected any quantity from the insecticide oxymatrine, 7 day is the pre harvest interval(PHI),The  average recoveries of   Oxymatrine in cucumber  fruit and leaves  was  84-86.2%, in soil was 102.3-102.9%, with the relative standard deviation (RSD) 1.1% and 0.9%  respectively. Through the results of this achievement, we determing the safety holding periods before the process of fruits reaping which was impossible to predict because the Oxymatrine does not have MRL in the Codex Alimentarius and European Union guideline and United States Environmental Protection Agency (USEPA), and the range of appropriateness the new method of extraction with cucumber as a future study we will expand the study of the degradation of Oxymatrine on other agricultural crops in the food basket for the Iraqi consumer.

Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y. 2009. The genome of the cucumber, Cucumis sativus L. Nature genetics, 41(12), p 1275.

Anton R, Patri F, Silano V. 2001. Plants in cosmetics: Plants and plant preparations used as ingredients for cosmetic products. Volume II. Council of Europe Publishing.

Abu-Reidah I, Arráez-Román D, Quirantes-Piné R, Fernández-Arroyo S, Segura-Carretero A, Fernández-Gutiérrez A. 2012. HPLC–ESI-Q-TOF-MS for a comprehensive characterization of bioactive phenolic compounds in cucumber whole fruit extract. Food Research International. 46, 108-117.

Gholami Z, Sadeghi A. 2016. Management Strategies for Western Flower Thrips in Vegetable Greenhouses in Iran: a Review. Plant Protect. Sci. 52(2), 87-98.

Liu G, Dong J, Wang H, Hashi Y, Chen S. 2011. Characterization of alkaloids in Sophora flavescens Ait. by high-performance liquid chromatography–electrospray ionization tandem mass spectrometry. Journal of pharmaceutical and biomedical analysis 54(5), p 1065-1072.

Lim SJ, Jeong DY, Choi GH, Park BJ, Kim JH. 2014. Quantitative analysis of matrine and oxymatrine in Sophora flavescens extract and its biopesticides by UPLC. Journal of Agricultural Chemistry and Environment 3(02), p.64.

Sineria company  Ltd.cyprus. 2016. Levo 2.4 S.L. www.sineria.org.

Rabea EI, Nasr HM, Badawy MEI. 2010. Toxic Effect and Biochemical Study of Chlorfl uazuron, Oxymatrine, and Spinosad on Honey Bees (Apis mellifera). Arch. Environ. Contam. Toxicol, 58, 722-732.

Anastassiades M, Lehotay SJ, Štajnbaher D. Schenck FJ. 2003. Fast and easy multiresidue method employing acetonitrile extraction/ partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. Journal of AOAC international 86(2), p 412-431.

Related Articles

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.

Conservation and trade dynamics of non-timber forest products in local markets in south western Cameroon

Kato Samuel Namuene, Mojoko Fiona Mbella, Godswill Ntsomboh-Ntsefong, Eunice Waki, Hudjicarel Kiekeh, J. Biodiv. & Environ. Sci. 27(2), 58-69, August 2025.

Overemphasis on blue carbon leads to biodiversity loss: A case study on subsidence coastal wetlands in southwest Taiwan

Yih-Tsong Ueng, Feng-Jiau Lin, Ya-Wen Hsiao, Perng-Sheng Chen, Hsiao-Yun Chang, J. Biodiv. & Environ. Sci. 27(2), 46-57, August 2025.

An assessment of the current scenario of biodiversity in Ghana in the context of climate change

Patrick Aaniamenga Bowan, Francis Tuuli Gamuo Junior, J. Biodiv. & Environ. Sci. 27(2), 35-45, August 2025.

Entomofaunal diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivation systems within the cotton-growing zone of central Benin

Lionel Zadji, Roland Bocco, Mohamed Yaya, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, J. Biodiv. & Environ. Sci. 27(2), 21-34, August 2025.

Biogenic fabrication of biochar-functionalized iron oxide nanoparticles using Miscanthus sinensis for oxytetracycline removal and toxicological assessment

Meenakshi Sundaram Sharmila, Gurusamy, Annadurai, J. Biodiv. & Environ. Sci. 27(2), 10-20, August 2025.

Bacteriological analysis of selected fishes sold in wet markets in Tuguegarao city, Cagayan, Philippines

Lara Melissa G. Luis, Jay Andrea Vea D. Israel, Dorina D. Sabatin, Gina M. Zamora, Julius T. Capili, J. Biodiv. & Environ. Sci. 27(2), 1-9, August 2025.

Effect of different substrates on the domestication of Saba comorensis (Bojer) Pichon (Apocynaceae), a spontaneous plant used in agroforestry system

Claude Bernard Aké*1, Bi Irié Honoré Ta2, Adjo Annie Yvette Assalé1, Yao Sadaiou Sabas Barima1, J. Biodiv. & Environ. Sci. 27(1), 90-96, July 2025.